login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136605
Triangle read by rows: T(n,k) = number of forests on n unlabeled nodes with k edges (n>=1, 0<=k<=n-1).
6
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 4, 6, 6, 1, 1, 2, 4, 7, 11, 11, 1, 1, 2, 4, 8, 14, 23, 23, 1, 1, 2, 4, 8, 15, 29, 46, 47, 1, 1, 2, 4, 8, 16, 32, 60, 99, 106, 1, 1, 2, 4, 8, 16, 33, 66, 128, 216, 235, 1, 1, 2, 4, 8, 16, 34, 69, 143, 284, 488, 551, 1, 1, 2, 4, 8, 16, 34, 70, 149, 315, 636, 1121, 1301
OFFSET
1,9
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 58-59.
LINKS
FORMULA
G.f.: Product_{k>=1} 1/(1 - y^(k-1)*x^k)^A000055(k). - Geoffrey Critzer, Nov 10 2014
EXAMPLE
Triangle begins:
1
1,1
1,1,1
1,1,2,2
1,1,2,3,3
1,1,2,4,6,6 <- T(6,3) = 4 forests on 6 nodes with 3 edges.
1,1,2,4,7,11,11
1,1,2,4,8,14,23,23
1,1,2,4,8,15,29,46,47
1,1,2,4,8,16,32,60,99,106
1,1,2,4,8,16,33,66,128,216,235
1,1,2,4,8,16,34,69,143,284,488,551
1,1,2,4,8,16,34,70,149,315,636,1121,1301
1,1,2,4,8,16,34,71,152,330,710,1467,2644,3159
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n<=1, n, (add(add(
d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1))
end:
t:= n-> `if`(n=0, 1, b(n)-(add(b(k)*b(n-k), k=0..n)-
`if`(irem(n, 2)=0, b(n/2), 0))/2):
g:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, expand(add(binomial(t(i)+j-1, j)*
g(n-i*j, i-1)*x^j, j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n-1))(g(n$2)):
seq(T(n), n=1..14); # Alois P. Heinz, Apr 11 2014
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}])/(n-1)]; t[n_] := If[n == 0, 1, b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0, Expand[Sum[Binomial[t[i] + j - 1, j]*g[n - i*j, i-1]*x^j, {j, 0, n/i}]]]]; T[n_] := CoefficientList[g[n, n], x] // Reverse // Most; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Apr 16 2014, after Alois P. Heinz *)
CROSSREFS
Row sums give A005195. Rightmost diagonal gives A000055. Cf. A001858, A138464.
Rows converge to A215930. Reflected table is A095133. - Alois P. Heinz, Apr 11 2014
Sequence in context: A324029 A378562 A334046 * A165621 A284321 A004739
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 09 2008
STATUS
approved