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THE NO~THREE-TN-LINE PROBLEM

Richard K. Guy and Patrick A. Kelly

The problem considered here was gilven, in the case n = 8, by
Dudeney [3] and Rouse Ball [2]. Given an » by n array of n2 points
of the unit lattice, select 2n of them so that no three are in a
straight line.

It is not known whether such configurations exist for all =n.
For n < 9, solutions have been found by hand [1,4] and by computer
[6]. The numbers of these are shown in Table I. Columns K, L, M,
N, 0, P, Q, R show the numbers of solutions having the symmetry of
a kite (K, symmetry about one diagonal, D), a lozenge (L, symmetry
about both diagonals), an isosceles trapezium (M, symmetry about
one bisector, B, of a pair of opposite sides), no symmetry (N),
that of an oblong (0, about both bisectors of pairs of opposite
sides), a parallelogram (P, symmetry of rotation through 1800), a
square (Q) and rotation (R) through a right angle; S and T are

totals, the latter counting solutions as distinct even when obtain-

n K L M N P Q R S T t
2 1 1 1

3 1

4 1 1 1 4 11 L4
5 2 5 32 152
6 2 2 3 11 50 | 372
7 1 11 10 22 | 132 824
8 5 1 40 7 4 57 | 380 | 1544
9 3 41 7 51 | 368 | 2712
10 3 1 132 13 1 6 |156 |1135 | 4448

Table T
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able one from another by a symmetry operation. The final column
shows tn (see later) calculated exactly from expression (8). The
lattice of subgroups of symmetries of a squave is illustrateu in

Figure 1, the generators being given in parentheses.
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Figure I

Theorem 1. If n is odd, there is no solution with symmetry O,

~ o N

that of an oblong; a fortiori none with symmetry Q, the full

symmetry of the square.

Proof: By considering the bisecting lines parallel to the sides.

~ o~

Conjecture 1. There is no solution with symmetry O except those

PURRNE

which also have the full symmetry, Q.
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gggjgggggg~g. If n > 10, there is no solution with symmetry G,
The solution shown in Figure I was discovered by Acland-Hood
[(1]. An unsuccessful search [6] was made for solutions of this

type with 12 < n < 32,
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Figure II.

In support of a third conjecture we next prove the following
theorem.
Theorem 2. The number, tn, of sets of three points in line that
can be chosen from an n by n portion of the unit lattice is given
by

3 u N
= — + .
t, 5 log n + o(n')

~RAXNETS

(x,y)» 1 < £, y <« n. The number of sets of three points in
lines parallel to either side of the square is

n

2n[3

The number of sets in lines parallel to either diagonal is

Z[g + 4{[";1] + n;2} S [gl}.a %'n(n-l)z(n—Z).

-1

; n? (n-1) (n-2) .

(1)

(2)

(3)
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Thus the numbers (2) and (3) may be absorbed in the error term in
(1). The main term will arise frow triples chesen from lines of

points (a,b), (atp, b+q), (a+2p, b+iq), ... where

1<qg<ps< [Br-D], (4)

square brackets denote integer part, and (r,q) = 1, i.e. p is

prime to g. Figure IIL is drawn to illlustrate the case n = 60,

mm E N EE e

p=7,q=5. Define r = [(n-1)/p], so that r = 8 in this case.

Points in regions marked 1 in Figure III are in lines originating
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in the rectangle 1 s @ s n - rp, 1 § b & n ~ rq, each line contain-
ing r+1 points. Those in regions 2 have n - rp +1<a<pand
1<hk<n - (r1)g, and r points in each line. Triples arising
from regions 1 and 2 should be counted 4 times, to allow for the
cases where one or both of p and ¢ are megative., Triples arising
from regions J (3 < j < r) are counted 8 times, for the same
reason, together with the fact that they are each repeated (see

the regions 5' in Figure III). These regions have n - {r+3-J)p +
l<asn- (pr2-J)p and 1 ¢ b £ q, except for j = 3 where the
range for @ is p+ 1 s a s n - (¢~1)p. The lines in these cases

contain r+3-j points. The required number of triples is thus

4{ (nmrp) (n=rq) ("3 + (x+1)p = W) (n = (=1 (P} +

r+3-3y) =

r
+ 8{(n-rp)q(3) + pq J; 3

(
Ly
= %-r(r—l){6n2 - dn(p+q) (»+1) + pq(r+l) (3r+2)},

summed for p and g in the range (4), and augmented by (2) and (3),
so that

t =-% n(n-1) (n=2) 3n-1) +

s(r-1)1 pz1 4

+ ) y Er’(r—l){an - 4n(p+q) (r+1) + pqlr+l) 3r+2)},
p=2  g=1
(p,q)=1
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The inner summation, over g, is facilitated by writing

p-1
Z 1= ¢(P),
q=1
(p,q)=1

Euler's totient function, and by the following lemma.

~~~~~~~ p-1 .
] ¢=35pé@), p =22
=1
(p,q)=1
whose proof follows from the observation that (p,q) = 1, if and

only if (p,p~q) = 1.

By using (6) and (7), we may rewrite (5) as

tn = %-n(n-l)(n—Z)(Bn-l) +
(2(n-1] ) )
+ ) g-r(r—l){12n - 12np(r+l) + p“(r+l) 3r+2) 1 ¢ (p).
p=2
1 [%(n-1)] )
t =5 ) r(r-1)(2n - p(r+1)) ¢ (p) =
p=2
[%(n-1)1]
%- r(r*-1) p2¢(p) + 0(n")
p=2
1 []"ﬁ(n-l)] -2 "
=3 r(r-1)(n -(p-t)) ¢(p) + 0(n’)
p=2

where we write n = pr+t (L s t < p) in the first term, and note

that the second term is 0(n') since r < n/p and ¢(p) < p. Hence

(6)

)]

(8)
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and the inequalities just given, together with ¢ < p < 7, show
that
[3(n-1)1

£ o=3n L s@ipt + o),
p=2

Theorem 2 will now follow from a second lemma.

Lemma 2
T 2 6
1 ¢ /p° = =5 log m + 0(1).
p=1 i
m m
Proof: I o /p” = 1 S H—é@,
p=1 p=1 P dlp

where u(d) is the Mgbius function [3], and, on writing p = dd*,

m ) d o m/d}
o () Ip° = L
pzl - dZ,d' B ghy

m
) 2D (tog m - 1og &) + 0(D)
=1

il

¢ oud
log m 2 B L o)
g=1 d*

j%-log m+ 0(1).
n
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For large n, the probability that three points, chosen at

random, should be in line is thus

3.4 n?
2 n' log 1/T3

and the probability that three such points should not be in line

18 log n

~
1T21’12

is

18 log n 1
1 - =081, o).
12,2 (n2>

1f we assume that the events are independent, the probability that

2n points contain no three in line is

a4
18 log n 1 2n .- £ n log n + 0(n)
1--————-5—2742 +o(——n2) 3 =g .
m

Hence an estimate of the number of solutions to the no-three-in-
line problem is given by

[nz] —24n/n2 o(n)

| n e ,

2n

which the use of Stirling's formula shows to be

-e.n n
)s

o(n "1 e, where

e, and ¢, are constants, with e, = - 2 + 24/n2. The expression

(9) supports our third conjecture.

Conjecture 3. There is only a finite number of solutions to the

~ e~~~

no-three-in-line problem.

(9
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It is clear, by the pigeon-hole principle, that it is not
possible to select more than 2n points without there being three
in line. In the other direction, even to choose a much smaller
number with no three in line seems difficult. Erdos [1] has
shown that n points may be so chosen, provided 7n is prime.
Choose those with coordinates (m,xz), reduced modulo n. Three

such points are in line if and only if

1 1 1
x Y z | =0, mod n.
xz y2 zz

I.e., If and only if (x-y) (y-2) (3-xz) = 0, mod 7, which is not pos-
sible if x, y, 2 are incongruent, mod 7, and n is prime. If n is
composite the construction fails, and it is not known if n points
can always be chosen with no three in line.

If we reproduce the probability argument with kn points in
place of 2n, the corresponding value of ¢, in (9) is -2 + 3k3/n2,

1
which tends to zero as n - «, provided k > (2n2/3) A ~ 1.873856.

Conjecture 4. TFor large n, we expect to be able to select approx-

—-~aT N~ A

1
imately (2ﬂ2/3)'6n points with no three in line, but no larger

number.
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