login
A357218
Primes p such that T(p) - 2 is prime, where T(p) is the triangular number (A000217) with index p.
2
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 149, 157, 193, 197, 233, 257, 269, 277, 281, 313, 337, 389, 401, 409, 457, 509, 521, 541, 613, 641, 673, 701, 797, 857, 877, 881, 929, 953, 997, 1009, 1033, 1093, 1109, 1117, 1129, 1153, 1193, 1297, 1301, 1373, 1381, 1433, 1481, 1493
OFFSET
1,1
COMMENTS
T(p) must be odd, so these primes p satisfy p == 1 (mod 4) (A002144).
Corresponding values of T(p)-2 are in A357219.
The first eleven primes == 1 (mod 4) are terms. The smallest Pythagorean prime that is not a term is A002144(12) = 101 because T(101) = 5151 and 5151 - 2 = 5149 = 19 * 271 (see Wells reference).
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 496, page 142.
EXAMPLE
T(5) - 2 = 5*6/2 - 2 = 13, hence 5 is a term.
MAPLE
filter := p -> isprime(p) and irem(p-1, 4) = 0 and isprime(p*(p+1)/2 -2) : select(filter, [$1 .. 1500]);
MATHEMATICA
Select[Prime[Range[240]], PrimeQ[#*(# + 1)/2 - 2] &] (* Amiram Eldar, Sep 18 2022 *)
CROSSREFS
Subsequence of A002144.
Sequence in context: A280084 A319287 A192592 * A349900 A347163 A111055
KEYWORD
nonn
AUTHOR
Bernard Schott, Sep 18 2022
STATUS
approved