login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A349899 Least number in A349898 divisible by the n-th prime. 2
2, 3, 5, 7, 22, 52, 136, 190, 1610, 12760, 35464, 196840, 2112320, 4093600, 22789360, 288608320 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Least value of A349194(k) divisible by the n-th prime for some k.

Does a(n) exist for each n? Is the sequence increasing?

LINKS

Table of n, a(n) for n=1..16.

PROG

(PARI) smooth(P, lim)=my(v=List([1]), nxt=vector(#P, i, 1), indx, t); while(1, t=vecmin(vector(#P, i, v[nxt[i]]*P[i]), &indx); if(t>lim, break); if(t>v[#v], listput(v, t)); nxt[indx]++); Vec(v);

has(n)=my(v=apply(k->[k, k], select(k->n%k==0, [2..10]))); while(#v, my(u=List()); for(i=1, #v, my(sd=v[i][1], a=v[i][2]); for(k=0, 9, my(nsd=sd+k, t=nsd*a); if(n%t==0, if(n==t, return(1)); listput(u, [nsd, t])))); v=Set(u)); 0

a(n)=if(n<5, return(prime(n))); my(P=primes(n+1), p=P[n], L=p, v=smooth(P, L), x); while(1, for(i=x+1, #v, if(has(p*v[i]), return(p*v[i]))); x=#v; v=smooth(P, L*=2))

\\ This program is heuristic and fails if a(n) is divisible by a prime >= prime(n+2). If this sequence is strictly increasing, "primes(n+1)" can be replaced with "primes(n)" for better speed and memory use.

CROSSREFS

Cf. A349194, A349898.

Sequence in context: A062239 A066483 A114420 * A113590 A124673 A024776

Adjacent sequences:  A349896 A349897 A349898 * A349900 A349901 A349902

KEYWORD

base,nonn

AUTHOR

Charles R Greathouse IV, Dec 04 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 02:55 EDT 2022. Contains 354047 sequences. (Running on oeis4.)