login
A127209
Primes p such that there exists at least one x in 2..p-1 with x = order(x) modulo p.
2
3, 11, 13, 17, 19, 29, 31, 37, 41, 53, 59, 61, 67, 71, 73, 83, 89, 97, 101, 107, 131, 137, 139, 149, 163, 173, 179, 181, 191, 193, 197, 211, 227, 233, 241, 251, 269, 271, 281, 293, 307, 313, 317, 337, 347, 349, 373, 379, 389, 401, 409, 419, 421, 439, 443, 449
OFFSET
1,1
EXAMPLE
13 is in the sequence because the order of 3 modulo 13 is 3.
PROG
(PARI) forprime(p=3, 500, for(x=2, p-1, if(znorder(Mod(x, p))==x, print1(p, ", "); break)))
CROSSREFS
Sequence in context: A179522 A020635 A175820 * A052362 A001619 A071197
KEYWORD
easy,nonn
AUTHOR
Nick Hobson, Jan 11 2007
STATUS
approved