

A127209


Primes p such that there exists at least one x in 2..p1 with x = order(x) modulo p.


1



3, 11, 13, 17, 19, 29, 31, 37, 41, 53, 59, 61, 67, 71, 73, 83, 89, 97, 101, 107, 131, 137, 139, 149, 163, 173, 179, 181, 191, 193, 197, 211, 227, 233, 241, 251, 269, 271, 281, 293, 307, 313, 317, 337, 347, 349, 373, 379, 389, 401, 409, 419, 421, 439, 443, 449
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..56.
N. Hobson, Home page (listed in lieu of email address)


EXAMPLE

13 is in the sequence because the order of 3 modulo 13 is 3.


PROG

(PARI) forprime(p=3, 500, for(x=2, p1, if(znorder(Mod(x, p))==x, print1(p, ", "); break)))


CROSSREFS

Sequence in context: A179522 A020635 A175820 * A052362 A001619 A071197
Adjacent sequences: A127206 A127207 A127208 * A127210 A127211 A127212


KEYWORD

easy,nonn


AUTHOR

Nick Hobson, Jan 11 2007


STATUS

approved



