login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127206
Numbers k such that k^j + (k+1)^j is prime for j = 1, 2, 4, 8.
1
1, 765, 39269, 70260, 71399, 85764, 100079, 167789, 218229, 307020, 388449, 468945, 514760, 553400, 568904, 782595, 826284, 1160199, 1220430, 1403775, 1633020, 1714739, 1727930, 1788144, 1932900, 1958705, 2023119, 2037450, 2178804, 2185520, 2193969, 2238474, 2264774
OFFSET
1,2
COMMENTS
k^j + (k+1)^j is prime only for j = power of 2.
Subset of A128780 which is a subset of A068501.
LINKS
EXAMPLE
{765 + 766, 765^2 + 766^2, 765^4 + 766^4, 765^8 + 766^8} = {1531, 1171981, 686770904161, 235828747162526935093921}, all prime.
MATHEMATICA
Do[If[PrimeQ[2n + 1] && PrimeQ[n^2 + (n+1)^2] && PrimeQ[n^4 + (n+1)^4] && PrimeQ[n^8 + (n+1)^8], Print[n]], {n, 5*10^6}] (* Ryan Propper, Mar 30 2007 *)
PROG
(Magma) [n: n in [1..3*10^6]| IsPrime(2*n+1) and IsPrime(n^2+(n+1)^2) and IsPrime(n^4+(n+1)^4) and IsPrime(n^8+(n+1)^8)]; // Vincenzo Librandi, Nov 18 2018
CROSSREFS
Sequence in context: A124413 A319741 A329757 * A343704 A343705 A247486
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 28 2007
EXTENSIONS
More terms from Ryan Propper, Mar 30 2007
STATUS
approved