|
|
A068501
|
|
Values m such that the consecutive pair parameters(m,m+1) generate Pythagorean triples whose odd terms are both prime.
|
|
8
|
|
|
1, 2, 5, 9, 14, 29, 30, 35, 39, 50, 65, 69, 90, 99, 135, 174, 189, 204, 224, 230, 260, 284, 285, 315, 320, 330, 369, 375, 410, 440, 464, 495, 515, 519, 525, 534, 545, 564, 575, 585, 590, 680, 719, 729, 744, 749, 765, 854, 870, 905, 915, 950, 974, 1080, 1119
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Setting u=m; v=m+1, triples (a,b,c) with a=u+v, b=2*u*v, c = u^2+v^2 = (a^2+1)/2 correspond to (A048161, A067755, A067756), a and c being both prime.
|
|
LINKS
|
|
|
MATHEMATICA
|
Reap[Do[a=Prime[k]; If[PrimeQ[(a^2+1)/2], Sow[(a-1)/2]], {k, 2, 10^5}]][[2, 1]](* Zak Seidov, Apr 16 2011 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Larry Reeves (larryr(AT)acm.org), Jun 19 2002
|
|
STATUS
|
approved
|
|
|
|