login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198971 a(n) = 5*10^n - 1. 8
4, 49, 499, 4999, 49999, 499999, 4999999, 49999999, 499999999, 4999999999, 49999999999, 499999999999, 4999999999999, 49999999999999, 499999999999999, 4999999999999999, 49999999999999999, 499999999999999999, 4999999999999999999 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Also maximal value of GCD of 2 distinct (n+1)-digit numbers (compare with A126687). - Michel Marcus, Jun 24 2013

Also, a(n) is the largest obtained remainder when an (n+1)-digit number m is divided by any k with 1 <= k <= m. This remainder is obtained when 10^(n+1)-1 is divided by 5*10^n, example: 999 = 500 * 1 + 499, and a(2) = 499. - Bernard Schott, Nov 23 2021

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (11,-10).

FORMULA

a(n) = 10*a(n-1) + 9.

a(n) = 11*a(n-1) - 10*a(n-2), n>1.

G.f.: (4 + 5*x)/(1 - 11*x + 10*x^2). - Vincenzo Librandi, Jan 03 2013

MATHEMATICA

CoefficientList[Series[(4 + 5*x)/(1 - 11*x + 10*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 03 2013 *)

LinearRecurrence[{11, -10}, {4, 49}, 20] (* Harvey P. Dale, Dec 30 2018 *)

PROG

(MAGMA) [5*10^n-1 : n in [0..20]]

(PARI) a(n)=5*10^n-1 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A002283.

Sequence in context: A067474 A053769 A173038 * A348547 A348425 A273230

Adjacent sequences:  A198968 A198969 A198970 * A198972 A198973 A198974

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Nov 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 13:14 EDT 2022. Contains 354883 sequences. (Running on oeis4.)