The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355481 Number of pairs of Dyck paths of semilength n such that the midpoint of the first is above the midpoint of the second. 3
 0, 0, 1, 4, 49, 441, 4806, 52956, 614713, 7341697, 90118054, 1130414649, 14447230854, 187609607862, 2470253990556, 32922380442828, 443493622670313, 6031353319151961, 82725531355436886, 1143385727109903585, 15913217995801644870, 222875331740976566070 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..839 Wikipedia, Counting lattice paths FORMULA a(n) = (A001246(n) - A129123(n))/2 = (A000108(n)^2 - A129123(n))/2. MAPLE b:= proc(n) option remember; `if`(n<2, 1, (2*n*(90*n^5-309*n^4+147*n^3+ 124*n^2-135*n+35)*b(n-1)+4*(n-1)^2*(4*n-5)*(4*n-3)*(15*n^2-4*n-12)* b(n-2))/(n*(n+1)^3*(15*n^2-34*n+7))) end: a:= n-> ((binomial(n+n, n)/(n+1))^2-b(n))/2: seq(a(n), n=0..21); MATHEMATICA A129123[n_] := Sum[(Binomial[n, k]-Binomial[n, k-1])^4, {k, 0, Floor[n/2]}]; a[n_] := (CatalanNumber[n]^2 - A129123[n])/2; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 16 2022 *) CROSSREFS Cf. A000108, A001246, A129123, A357652. Sequence in context: A045787 A067474 A053769 * A362479 A173038 A198971 Adjacent sequences: A355478 A355479 A355480 * A355482 A355483 A355484 KEYWORD nonn AUTHOR Alois P. Heinz, Oct 07 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 00:43 EST 2024. Contains 370239 sequences. (Running on oeis4.)