login
A273230
Squares that remain squares if you decrease them by 3 times a repunit with the same number of digits.
3
4, 49, 529, 4489, 38809, 344569, 363609, 375769, 444889, 558009, 597529, 700569, 7198489, 35366809, 44448889, 65983129, 4444488889, 5587114009, 83574762649, 335330171929, 359763638809, 390241344249, 403831017529, 407200963129, 435775577689, 444444888889, 453557800089
OFFSET
1,1
COMMENTS
Apart from the initial term, any number ends in 9.
LINKS
EXAMPLE
4 - 3*1 = 1 = 1^2;
49 - 3*11 = 16 = 4^2;
529 - 3*111 = 196 = 14^2.
MAPLE
P:=proc(q, h) local n; for n from 1 to q do
if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9), integer) then print(n^2);
fi; od; end: P(10^9, 3);
MATHEMATICA
sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 3 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Paolo P. Lava, May 18 2016
STATUS
approved