login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189146
Number of n X 3 array permutations with each element making zero or one knight moves.
1
1, 4, 49, 569, 4372, 42689, 412189, 3988132, 38271921, 375573977, 3665309372, 35872284105, 350949375581, 3439343559628, 33682318930233, 330021363385529, 3233215326749252, 31680809629578289, 310402921706993341
OFFSET
1,2
COMMENTS
Column 3 of A189150.
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) +48*a(n-2) -371*a(n-3) +173*a(n-4) -4636*a(n-5) -21700*a(n-6) +321034*a(n-7) -261016*a(n-8) -939316*a(n-9) +8804712*a(n-10) -89239632*a(n-11) +89709648*a(n-12) +830637056*a(n-13) -2499914752*a(n-14) +6390654336*a(n-15) -987233536*a(n-16) -98495866880*a(n-17) +227291122176*a(n-18) -22499119616*a(n-19) -574642074624*a(n-20) +4090433287168*a(n-21) -8710999644160*a(n-22) -9262792159232*a(n-23) +33961426997248*a(n-24) -59705619185664*a(n-25) +164268932415488*a(n-26) +206996041138176*a(n-27) -959952477028352*a(n-28) +148261211865088*a(n-29) +225201818959872*a(n-30) -528765464084480*a(n-31) +2794884482203648*a(n-32) +3264721555816448*a(n-33) +9397359024799744*a(n-34) -32363504358916096*a(n-35) -14560459025809408*a(n-36) +41205664512475136*a(n-37) -65070379105779712*a(n-38) +117763114509795328*a(n-39) -26803976066301952*a(n-40) +132124530591137792*a(n-41) +236469835482005504*a(n-42) -1308758689225637888*a(n-43) +382298681149227008*a(n-44) +1688786500906385408*a(n-45) -1092767223451222016*a(n-46) -1774519408253730816*a(n-47) +3781671287689052160*a(n-48) -211699968811991040*a(n-49) -6414401302863806464*a(n-50) +3737846953229156352*a(n-51) +2510967898491584512*a(n-52) +740560663725735936*a(n-53) -4415779434636771328*a(n-54) +2508504992445366272*a(n-55) +54043195528445952*a(n-56) -1152921504606846976*a(n-57) +576460752303423488*a(n-58)
Contribution from Vaclav Kotesovec, Sep 01 2012: (Start)
Empirical: G.f.: -(1 - 8*x - 53*x^2 + 336*x^3 + 134*x^4 + 2846*x^5 + 19852*x^6 - 260036*x^7 + 6880*x^8 + 1292304*x^9 - 4702832*x^10 + 63471872*x^11 - 41560704*x^12 - 709453568*x^13 + 1351929600*x^14 - 3128104192*x^15 - 659457024*x^16 + 70691011072*x^17 - 106136367104*x^18 - 132922614784*x^19 + 318303350784*x^20 - 2065904152576*x^21 + 3225670889472*x^22 + 10372375166976*x^23 - 11884683280384*x^24 + 821650128896*x^25 - 70221817905152*x^26 - 122303538593792*x^27 + 415569654579200*x^28 + 388617697755136*x^29 - 457567875104768*x^30 + 122123978801152*x^31 - 134229549645824*x^32 - 7331344765943808*x^33 - 2581369716736000*x^34 + 28061409178812416*x^35 + 3074337254932480*x^36 - 27158215842070528*x^37 + 16916901758238720*x^38 - 8637373579526144*x^39 - 42490723492167680*x^40 - 200005314030862336*x^41 + 176918825432776704*x^42 + 705725146060554240*x^43 - 362309834634166272*x^44 - 1007318127542796288*x^45 + 222508717868843008*x^46 + 1439135376433217536*x^47 - 1225049467388952576*x^48 - 273971909362712576*x^49 + 2010997971109281792*x^50 - 2011772027295236096*x^51 + 145522562959409152*x^52 + 534802455750246400*x^53 + 22517998136852480*x^54 - 288230376151711744*x^55 + 144115188075855872*x^56)/( - 1 + 9*x + 48*x^2 - 371*x^3 + 173*x^4 - 4636*x^5 - 21700*x^6 + 321034*x^7 - 261016*x^8 - 939316*x^9 + 8804712*x^10 - 89239632*x^11 + 89709648*x^12 + 830637056*x^13 - 2499914752*x^14 + 6390654336*x^15 - 987233536*x^16 - 98495866880*x^17 + 227291122176*x^18 - 22499119616*x^19 - 574642074624*x^20 + 4090433287168*x^21 - 8710999644160*x^22 - 9262792159232*x^23 + 33961426997248*x^24 - 59705619185664*x^25 + 164268932415488*x^26 + 206996041138176*x^27 - 959952477028352*x^28 + 148261211865088*x^29 + 225201818959872*x^30 - 528765464084480*x^31 + 2794884482203648*x^32 + 3264721555816448*x^33 + 9397359024799744*x^34 - 32363504358916096*x^35 - 14560459025809408*x^36 + 41205664512475136*x^37 - 65070379105779712*x^38 + 117763114509795328*x^39 - 26803976066301952*x^40 + 132124530591137792*x^41 + 236469835482005504*x^42 - 1308758689225637888*x^43 + 382298681149227008*x^44 + 1688786500906385408*x^45 - 1092767223451222016*x^46 - 1774519408253730816*x^47 + 3781671287689052160*x^48 - 211699968811991040*x^49 - 6414401302863806464*x^50 + 3737846953229156352*x^51 + 2510967898491584512*x^52 + 740560663725735936*x^53 - 4415779434636771328*x^54 + 2508504992445366272*x^55 + 54043195528445952*x^56 - 1152921504606846976*x^57 + 576460752303423488*x^58)
Asymptotic: 0.045707910845127735589456 * 9.7983760587433722777622517835675^n
(End)
EXAMPLE
Some solutions for 4 X 3:
..0..8..3....0..1..2....0..1..7....0..8..7....5..1..2....0..1..7....7..6..3
..2..9..6....8.11.10....3..4..6....3..9.10....8..9..0....8..4..5....2..4.10
..5..7..1....6..7..3....5..2..9...11..2..1....6..7..3...11..2..3....1..0..9
..4.10.11....9..5..4....8.10.11....4..5..6....4.10.11....9.10..6....8..5.11
CROSSREFS
Sequence in context: A348425 A273230 A199028 * A086094 A055793 A202829
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 17 2011
STATUS
approved