login
A189145
Number of n X 2 array permutations with each element making zero or one knight moves.
19
1, 1, 4, 16, 36, 81, 225, 625, 1600, 4096, 10816, 28561, 74529, 194481, 509796, 1336336, 3496900, 9150625, 23961025, 62742241, 164249856, 429981696, 1125736704, 2947295521, 7716041281, 20200652641, 52886200900, 138458410000
OFFSET
1,3
COMMENTS
Column 2 of A189150.
a(n+2) is number of ways to place k non-attacking knights on a 2 x n board, sum over all k>=0.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +6*a(n-3) -6*a(n-5) +3*a(n-6) -3*a(n-7) +a(n-8).
Empirical: G.f. -x*(1-2*x+4*x^2+x^3+3*x^5+x^7-6*x^4-3*x^6) / ( (x-1)*(1+x)*(x^2-3*x+1)*(x^4+3*x^2+1) ). - R. J. Mathar, Oct 15 2011
Explicit formula: ((3+sqrt(5))/2)^(n+2)/25 + ((3-sqrt(5))/2)^(n+2)/25 + (((sqrt(5)+1)/2)^(n+2) + ((sqrt(5)-1)/2)^(n+2))*4*cos((Pi*n)/2)/25 + (((sqrt(5)+1)/2)^(n+2) - ((sqrt(5)-1)/2)^(n+2))*2*sin((Pi*n)/2)/25 + 1/10 + 7/50*(-1)^n. - Vaclav Kotesovec, Nov 07 2011
EXAMPLE
All solutions for 3X2
..0..1....0..4....5..1....5..4
..2..3....2..3....2..3....2..3
..4..5....1..5....4..0....1..0
MATHEMATICA
Table[FullSimplify[LucasL[2n+4]/25 + (3*Fibonacci[n+1] + Fibonacci[n]) * (2*Cos[(Pi*n)/2] + Sin[(Pi*n)/2])*2/25 + 7*(-1)^n/50 + 1/10], {n, 1, 20}] (* Vaclav Kotesovec, Nov 07 2011 *)
CROSSREFS
Sequence in context: A207170 A207069 A207436 * A005722 A372635 A075408
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 17 2011
STATUS
approved