OFFSET
1,3
COMMENTS
Column 2 of A189150.
a(n+2) is number of ways to place k non-attacking knights on a 2 x n board, sum over all k>=0.
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..200
FORMULA
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +6*a(n-3) -6*a(n-5) +3*a(n-6) -3*a(n-7) +a(n-8).
Empirical: G.f. -x*(1-2*x+4*x^2+x^3+3*x^5+x^7-6*x^4-3*x^6) / ( (x-1)*(1+x)*(x^2-3*x+1)*(x^4+3*x^2+1) ). - R. J. Mathar, Oct 15 2011
Explicit formula: ((3+sqrt(5))/2)^(n+2)/25 + ((3-sqrt(5))/2)^(n+2)/25 + (((sqrt(5)+1)/2)^(n+2) + ((sqrt(5)-1)/2)^(n+2))*4*cos((Pi*n)/2)/25 + (((sqrt(5)+1)/2)^(n+2) - ((sqrt(5)-1)/2)^(n+2))*2*sin((Pi*n)/2)/25 + 1/10 + 7/50*(-1)^n. - Vaclav Kotesovec, Nov 07 2011
EXAMPLE
All solutions for 3X2
..0..1....0..4....5..1....5..4
..2..3....2..3....2..3....2..3
..4..5....1..5....4..0....1..0
MATHEMATICA
Table[FullSimplify[LucasL[2n+4]/25 + (3*Fibonacci[n+1] + Fibonacci[n]) * (2*Cos[(Pi*n)/2] + Sin[(Pi*n)/2])*2/25 + 7*(-1)^n/50 + 1/10], {n, 1, 20}] (* Vaclav Kotesovec, Nov 07 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 17 2011
STATUS
approved