login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189144
a(n) = lcm(n,n+1,n+2,n+3,n+4,n+5,n+6)/420.
2
0, 1, 2, 6, 6, 66, 66, 858, 858, 429, 572, 9724, 2652, 50388, 3876, 3876, 42636, 245157, 28842, 48070, 32890, 296010, 296010, 780390, 33930, 525915, 841464, 712008, 1344904, 1344904, 139128
OFFSET
0,3
COMMENTS
(n-1)!*12600*a(n)/(n+6)! produces a sequence of fractions (from offset 1).
The numerators have a period of 5, repeating [5,5,5,1,1]=4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1
The denominators have a period of 12, repeating [2,8,12,8,2,24,4,8,6,8,4,24]. This sequence factors to 2^p(n)*3^q(n) where p(n) is a sequence of period 4, repeating [1,3,2,3] and q(n) is a sequence of period 3, repeating [0,0,1]. p(n) = A131729(n+1)+2. q(n) = A022003(n-1).
FORMULA
a(n)= (n+6)!*f(n)/(12600*(n-1)!*2^p(n)*3^q(n)),n>0 where
f(n)= 4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1
p(n)=(9+2*cos((n-3)*Pi/2)+3*(-1)^n)/4
q(n)=((n-1)^5 -(n-1)^2) mod 3
MAPLE
seq(lcm(n, n+1, n+2, n+3, n+4, n+5, n+6)/420, n=0..30);
f:= n-> 4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1:p:= n->)=(9+2*cos((n-3)*Pi/2)+3*(-1)^n)/4:q:=n->)=((n-1)^5 -(n-1)^2) mod 3: seq((n+6)!*f(n)/(12600*(n-1)!*2^p(n)*3^q(n)), n=1..30);
MATHEMATICA
Table[(LCM@@Range[n, n+6])/420, {n, 0, 30}] (* Harvey P. Dale, Jun 13 2015 *)
PROG
(Haskell)
a189144 n = (foldl1 lcm [n..n+6]) `div` 420
-- Reinhard Zumkeller, Apr 28 2011
CROSSREFS
Sequence in context: A226707 A097504 A356521 * A367676 A130726 A369119
KEYWORD
nonn,look
AUTHOR
Gary Detlefs, Apr 17 2011
STATUS
approved