OFFSET
0,3
COMMENTS
(n-1)!*12600*a(n)/(n+6)! produces a sequence of fractions (from offset 1).
The numerators have a period of 5, repeating [5,5,5,1,1]=4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
FORMULA
a(n)= (n+6)!*f(n)/(12600*(n-1)!*2^p(n)*3^q(n)),n>0 where
f(n)= 4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1
p(n)=(9+2*cos((n-3)*Pi/2)+3*(-1)^n)/4
q(n)=((n-1)^5 -(n-1)^2) mod 3
MAPLE
seq(lcm(n, n+1, n+2, n+3, n+4, n+5, n+6)/420, n=0..30);
f:= n-> 4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1:p:= n->)=(9+2*cos((n-3)*Pi/2)+3*(-1)^n)/4:q:=n->)=((n-1)^5 -(n-1)^2) mod 3: seq((n+6)!*f(n)/(12600*(n-1)!*2^p(n)*3^q(n)), n=1..30);
MATHEMATICA
Table[(LCM@@Range[n, n+6])/420, {n, 0, 30}] (* Harvey P. Dale, Jun 13 2015 *)
PROG
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Gary Detlefs, Apr 17 2011
STATUS
approved