The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055793 Numbers n such that n and floor[n/3] are both squares; i.e., squares which remain squares when written in base 3 and last digit is removed. 28
 0, 1, 4, 49, 676, 9409, 131044, 1825201, 25421764, 354079489, 4931691076, 68689595569, 956722646884, 13325427460801, 185599261804324, 2585064237799729, 36005300067391876, 501489136705686529, 6984842613812219524, 97286307456665386801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Or, squares of the form 3n^2+1. See A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..800 Tom C. Brown and Peter J Shiue, Squares of second-order linear recurrence sequences, Fib. Quart., 33 (1994), 352-356. M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012 Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55. Index to sequences related to truncating digits of squares. Index entries for linear recurrences with constant coefficients, signature (15,-15,1). FORMULA a(n) = 3*A098301(n-2)+1. - R. J. Mathar, Jun 11 2009 a(n) = 14*a(n-1)-a(n-2)-6, with a(0)=1, a(1)=4. (See Brown and Shiue) a(n) = (A001075(n-2))^2. - Johannes Boot Dec 16 2011, corrected by M. F. Hasler, Jan 15 2012 G.f.: x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)). - M. F. Hasler, Jan 15 2012 EXAMPLE a(3) = 49 because 49 = 7^2 = 1211 base 3 and 121 base 3 = 16 = 4^2. MAPLE A055793 := proc(n) coeftayl(x*(1-11*x+4*x^2)/((1-x)*(1-14*x+x^2)), x=0, n); end proc: seq(A055793(n), n=0..20); # Wesley Ivan Hurt, Sep 28 2014 MATHEMATICA CoefficientList[Series[x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 28 2014 *) LinearRecurrence[{15, -15, 1}, {0, 1, 4, 49}, 40] (* Harvey P. Dale, Jun 19 2021 *) PROG (PARI) sq3nsqplus1(n) = { for(x=1, n, y = 3*x*x+1; \ print1(y" ") if(issquare(y), print1(y" ")) ) } (Magma) I:=[0, 1, 4]; [n le 3 select I[n] else 14*Self(n-1) - Self(n-2) - 6: n in [1..30]]; // Vincenzo Librandi, Jan 27 2013 CROSSREFS Cf. A001075, A023110, A098301. Cf. also A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases. Sequence in context: A199028 A189146 A086094 * A202829 A204233 A144656 Adjacent sequences: A055790 A055791 A055792 * A055794 A055795 A055796 KEYWORD base,nonn,easy AUTHOR Henry Bottomley, Jul 14 2000 EXTENSIONS More terms from Cino Hilliard, Mar 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 07:10 EST 2023. Contains 367510 sequences. (Running on oeis4.)