The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055794 Triangle T read by rows: T(i,0)=1 for i >= 0; T(i,i)=0 for i=0,1,2,3; T(i,i)=0 for i >= 4; T(i,j) = T(i-1,j) + T(i-2,j-1) for 1<=j<=i-1. 6
 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 0, 1, 5, 7, 4, 1, 0, 1, 6, 11, 8, 3, 0, 0, 1, 7, 16, 15, 7, 1, 0, 0, 1, 8, 22, 26, 15, 4, 0, 0, 0, 1, 9, 29, 42, 30, 11, 1, 0, 0, 0, 1, 10, 37, 64, 56, 26, 5, 0, 0, 0, 0, 1, 11, 46, 93, 98, 56, 16, 1, 0, 0, 0, 0, 1, 12, 56, 130, 162, 112, 42, 6, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS T(i+j,j) is the number of strings (s(1),...,s(i+1)) of nonnegative integers s(k) such that 0<=s(k)-s(k-1)<=1 for k=2,3,...,i+1 and s(i+1)=j. T(i+j,j) is the number of compositions of j consisting of i parts, all of in {0,1}. LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened C. Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 1B. EXAMPLE Triangle begins:   1;   1, 1;   1, 2, 1;   1, 3, 2, 1;   1, 4, 4, 2, 0;   1, 5, 7, 4, 1, 0;   ... T(7,4) counts the strings 3334, 3344, 3444, 2234, 2334, 2344, 1234. T(7,4) counts the compositions 001, 010, 100, 011, 101, 110, 111. MAPLE T:= proc(n, k) option remember;       if k=0 then 1     elif k=n and n<4 then 1     elif k=n then 0     else T(n-1, k) + T(n-2, k-1)       fi; end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Jan 25 2020 MATHEMATICA T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n && n<4, 1, If[k==n, 0, T[n-1, k] + T[n-2, k-1] ]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 25 2020 *) PROG (PARI) T(n, k) = if(k==0, 1, if(k==n && n<4, 1, if(k==n, 0, T(n-1, k) + T(n-2, k-1) ))); for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jan 25 2020 (MAGMA) function T(n, k)   if k eq 0 then return 1;   elif k eq n and n lt 4 then return 1;   elif k eq n then return 0;   else return T(n-1, k) + T(n-2, k-1);   end if; return T; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 25 2020 (Sage) @CachedFunction def T(n, k):     if (k==0): return 1     elif (k==n and n<4): return 1     elif (k==n): return 0     else: return T(n-1, k) + T(n-2, k-1) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 25 2020 (GAP) T:= function(n, k)     if k=0 then return 1;     elif k=n and n<4 then return 1;     elif k=n then return 0;     else return T(n-1, k) + T(n-2, k-1);     fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jan 25 2020 CROSSREFS Row sums: A000032 (Lucas numbers, 1, 2, 4, 7, 11, 18, ...). T(2n, n)=A000125(n) (Cake numbers, 1, 2, 4, 8, 15, 26, ...). T(2n+2, n)=A027660(n). Sequence in context: A077592 A343658 A194005 * A092905 A052509 A172119 Adjacent sequences:  A055791 A055792 A055793 * A055795 A055796 A055797 KEYWORD nonn,tabl AUTHOR Clark Kimberling, May 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 20:36 EDT 2021. Contains 343652 sequences. (Running on oeis4.)