|
|
A098301
|
|
Member r=16 of the family of Chebyshev sequences S_r(n) defined in A092184.
|
|
11
|
|
|
0, 1, 16, 225, 3136, 43681, 608400, 8473921, 118026496, 1643897025, 22896531856, 318907548961, 4441809153600, 61866420601441, 861688079266576, 12001766689130625, 167163045568562176, 2328280871270739841, 32428769152221795600, 451674487259834398561
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also m such that (3*m^2 + m)/4 = m*(3*m + 1)/4 is a perfect square. - Ctibor O. Zizka, Oct 15 2010
Consequently A049451(k) is a square if and only if k = a(n). - Bruno Berselli, Oct 14 2011
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..874
S. Barbero, U. Cerruti, and N. Murru, On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
Index entries for sequences related to Chebyshev polynomials.
Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
|
|
FORMULA
|
a(n) = (T(n, 7)-1)/6 with Chebyshev's polynomials of the first kind evaluated at x=7: T(n, 7) = A011943(n) = ((7 + 4*sqrt(3))^n + (7 - 4*sqrt(3))^n)/2; therefore: a(n) = ((7 + 4*sqrt(3))^n + (7 - 4*sqrt(3))^n - 2)/12.
a(n) = A001353(n)^2 = S(n-1, 4)^2 with Chebyshev's polynomials of the second kind evaluated at x=4, S(n, 4):=U(n, 2).
a(n) = 14*a(n-1) - a(n-2) + 2, n >= 2, a(0)=0, a(1)=1.
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3), n >= 3.
G.f.: x*(1+x)/((1-x)*(1 - 14*x + x^2)) = x*(1+x)/(1 - 15*x + 15*x^2 - x^3) (from the Stephan link, see A092184).
Conjecture: 4*A007655(n+1) + A046184(n) = A055793(n+2) + a(n+1). - Creighton Dement, Nov 01 2004
a(n) = (A001075(n)^2-1)/3. - Parker Grootenhuis, Nov 28 2017
|
|
MATHEMATICA
|
LinearRecurrence[{# - 1, -# + 1, 1}, {0, 1, #}, 20] &[16] (* Michael De Vlieger, Feb 23 2021 *)
|
|
PROG
|
(PARI) concat(0, Vec(x*(1+x)/((1-x)*(1-14*x+x^2)) + O(x^50))) \\ Colin Barker, Jun 15 2015
|
|
CROSSREFS
|
Cf. A001075, A001353, A049451, A092184.
Sequence in context: A209444 A051822 A017438 * A337900 A014897 A048445
Adjacent sequences: A098298 A098299 A098300 * A098302 A098303 A098304
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
Wolfdieter Lang, Oct 18 2004
|
|
STATUS
|
approved
|
|
|
|