OFFSET
1,2
LINKS
FORMULA
a(n) = [A001791(n)]^2.
G.f.: x*4F3(3/2, 3/2, 2, 2; 1, 3, 3; 16*x).
D-finite with recurrence (n-1)^2*(n+1)^2*a(n) - 4*n^2*(2*n-1)^2*a(n-1) = 0.
a(n) = (2n)!*[x^(2n)] BesselI(0, 2x)*BesselI(2, 2x). - Peter Luschny, Dec 05 2024
EXAMPLE
a(2) = 16 counts the walks RRRL, RRLR, RLRR, LRRR, RRUD, RRDU, RDRU, RURD, RUDR, RDUR, URRD, DRRU, URDR, DRUR, UDRR, DURR of length 4.
MAPLE
egf := BesselI(0, 2*x)*BesselI(2, 2*x): ser := series(egf, x, 40):
seq((2*n)!*coeff(ser, x, 2*n), n = 1..19); # Peter Luschny, Dec 05 2024
CROSSREFS
KEYWORD
nonn,easy,walk
AUTHOR
R. J. Mathar, Sep 29 2020
STATUS
approved