login
A337900
The number of walks of length 2n on the square lattice that start from the origin (0,0) and end at the vertex (2,0).
5
1, 16, 225, 3136, 44100, 627264, 9018009, 130873600, 1914762564, 28210561600, 418151049316, 6230734868736, 93271169290000, 1401915345465600, 21147754404155625, 320042195924198400, 4857445984927644900, 73916947787011560000, 1127482124965160372100
OFFSET
1,2
FORMULA
a(n) = [A001791(n)]^2.
G.f.: x*4F3(3/2, 3/2, 2, 2; 1, 3, 3; 16*x).
D-finite with recurrence (n-1)^2*(n+1)^2*a(n) - 4*n^2*(2*n-1)^2*a(n-1) = 0.
a(n) = (2n)!*[x^(2n)] BesselI(0, 2x)*BesselI(2, 2x). - Peter Luschny, Dec 05 2024
EXAMPLE
a(2) = 16 counts the walks RRRL, RRLR, RLRR, LRRR, RRUD, RRDU, RDRU, RURD, RUDR, RDUR, URRD, DRRU, URDR, DRUR, UDRR, DURR of length 4.
MAPLE
egf := BesselI(0, 2*x)*BesselI(2, 2*x): ser := series(egf, x, 40):
seq((2*n)!*coeff(ser, x, 2*n), n = 1..19); # Peter Luschny, Dec 05 2024
CROSSREFS
Cf. A002894 (at (0,0)), A060150 (at (1,0)), A135389 (at (1,1)), A337901 (at (3,0)), A337902 (at (2,1)).
Cf. A001791.
Sequence in context: A051822 A017438 A098301 * A014897 A048445 A028340
KEYWORD
nonn,easy,walk
AUTHOR
R. J. Mathar, Sep 29 2020
STATUS
approved