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Abstract. In the simple random walk on the 2D square lattice, the proba-

bility of returning to the origin is 1. We derive the probability of 1/2 of first
returning to the origin without passing through the vertex (1,0) and the prob-

ability of 1/2 of first passing through the vertex (1,0) before returning to the

origin.

1. Notations

We consider simple random walks on the infinite square lattice that start at the
origin and take n steps with equal probability 1

4 to any of the 4 adjacent vertices.
Simple means there are no constraints of staying in some quadrants of the lattice,
no constraints on selfavoidance and no constraints of walking back to the vertex of
the previous step. Chains of the following mnemonics serve to trace a walk by the
type of vertex after some number of steps:

• 0 is a step on the origin;
• 1 is a step on the (1, 0) vertex right from the origin;
• X is a step on a vertex that is neither a 0 nor a 1;
• 0̄ is a step not on the origin;
• 1̄ is a step not on 1 (the union of 0 and X);
• ∗ is a step on any vertex (the union of 0, 1 and X).

Upper indices indicate paths which remain in one set of vertices (similar to fre-
quency indicators of partition notations). We add a hash in front of a chain of
mnemonics for the count of random walks of that category.

Because each step changes either the x or the y-coordinate of the vertex by 1, a
parity rule applies: the number of walks of length n starting at the origin to some
vertex is zero if the parity (remainder after division through 2) of n does not equal
the remainder of the sum of the x and y coordinate of the vertex.

A walk can also be described by a word of length n of the 4-letter alphabet
L(eft), R(ight), U(p) and D(own) describing which compass direction of the square
lattice a step takes.

The basic examples of enumerating walks are:

• There is one walk of length 1 ending at 1. #(01) = 1.
• There are four walks of length 2 returning to 0: UD, LR, RL, DU, #(00̄0) =

4, see the leading term in (3).
• There is are two walks of length 3 avoiding 0 and 1 at intermediate steps

and ending at 1: URD and DRU, #(0X21) = 2.

Date: September 28, 2020.
2010 Mathematics Subject Classification. Primary 05C81; Secondary 60G50.

1



2 RICHARD J. MATHAR

• There is are five walks of length 3 avoiding 0 and ending at 1: URD, DRU,
RRL, RUD, and RDU, #(00̄21) = 5.
• There is are nine walks of length 3 ending at 1: URD, DRU, RRL, RUD,

RDU, RLR, LRR, UDR, DUR #(0∗1) = 9. This is a preview of a coefficient
in Eq. (6).
• There are 16 walks of length 5 avoiding 0 and 1 at intermediate steps and

ending at 1: DDRUU, DRDUU, DDURU, LDRRU, DLRRU, DRLRU, DR-
RLU, LURRD, ULRRD, UUDRD, URLRD, URUDD, UURDD, URRLD,
DRRUL, and URRDL: #(0X41) = 16. This is a preview of a coefficient of
Eq. (18).

2. Returns

A walk of length n that that returns to the origin is a word of length n on the
4-letter alphabet where the number of (letters of) L equals the number of R, and
where the number of U equals the number of D. By the parity rule the number
of these walks is zero if n is odd. For n even we may distribute the L without
constraint over the n places, then distribute the R over the remaining n−L places,
then distribute the U = (n−2L)/2 over the remaining n−2L places. So the number
of walks that return to the origin is

(1)

#(0∗n−10) =

n/2∑
L=0

(
n

L

)(
n− L

L

)(
n− 2L

n/2− L

)
=

n/2∑
L=0

n!

(n− L)!L!

(n− L)!

(n− 2L)!L!

(n− 2L)!

[(n/2− L)!]2

= n!

n/2∑
L=0

1

[L!]2
1

[(n/2− L)!]2
=

n!

[(n/2)!]2

n/2∑
L=0

[
(n/2)!

L!(n/2− L)!

]2

=
n!

[(n/2)!]2

n/2∑
L=0

[(
n/2

L

)]2
=

[(
n

n/2

)]2
.

This is sequence [4, A002894] in the Online Encyclopedia of Integer Sequences. The
summation is a special case for sums of squares of binomial coefficients [9, 8].

Define the generating function

(2)
∑

n=0,2,4,...

#(0 ∗n−1 0)zn ≡ #z(0 ∗n−1 0) =
∑

l=0,1,2,...

[
(2l)!

l!2

]2
z2l

= 2F1

(
1

2
,

1

2
; 1; (4z)2

)
= 1 + 4z2 + 36z4 + 400z6 + . . . .

for these returns by a standard technique to sum up hypergeometric series [6]. The
number of first returns after n steps, #(00̄n−10), has a generating function which
is the series inversion [1, 3]

(3)
∑

n=0,2,4,...

#(00̄n−10)zn ≡ #z(00̄n−10) = 1− 1

2F1

(
1
2 ,

1
2 ; 1; (4z)2

)
= 4z2 + 20z4 + 176z6 + 1876z8 + · · · .
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This is sequence [4, A054474]. The key point of the following analysis is that we
consider these numbers #(00̄n−10), number of walks with first return to the origin
after n steps, to be perfectly known through this generating function tracer.

Dividing the number of walks of length n through 4n assigns a probability to
each walk. In particular the probability of a walk of length n to return for the first
time to the origin is #(00̄n−10)/4n. By summation over n, the total probability
of all walks to return for the first time to 0 is the generating function at z = 1/4,
where

(4) 1− 1

2F1( 1
2 ,

1
2 ; 1; 1)

= 1.

The return is certain for this type of walks on the 2D square lattice [5].

3. Passage through 1

A walk of length n that ends at 1 is a word of length n where the number of R
is one larger than the number of L, and where the number of U equals the number
of D: R = 1 + L, R + L + U + D = n, U = D. By the parity criterion this is zero
if n is even. If n is odd we repeat the combinatorics of first selecting the places of
the L’s, then the R’s and then the U’s as above:

(5) #(0 ∗n−1 1) =

(n−1)/2∑
L=0

(
n

L

)(
n− L

L + 1

)(
n− 2L− 1

(n− 1)/2− L

)

=

(n−1)/2∑
L=0

n!

(n− L)!L!

(n− L)!

(n− 2L− 1)!(1 + L)!

(n− 2L− 1)!

[(n− 1)/2− L]!((n− 1)/2− L)!

=

(
n

(n− 1)/2

) (n−1)/2∑
L=0

(
(n− 1)/2

L

)(
(n + 1)/2

L

)
=

1

2

(
n

(n− 1)/2

)
(n + 1)!

[(n + 1)/2]2

=

[(
n

(n− 1)/2

)]2
.

This is sequence [4, A060150]. The associated generating function is

(6)
∑

n=1,3,5,...

#(0 ∗n−1 1)zn ≡ #z(0 ∗n−1 1) = z3F2

(
1,

3

2
,

3

2
; 2, 2; (4z)2

)
= z + 9z3 + 100z5 + 1225z7 + 15876z9 · · · .

4. Return to origin avoiding 1

The number of walks that return to the origin avoiding 0 during all intermediate
steps is #(00̄n−10), and can be reclassified by the walks that pass by 1 never, once,
twice, . . . times in between [10]:
(7)

#(00̄n−10) = #(0Xn−10)+
∑
i

#(0Xi1Xn−i−20)+
∑
i,j

#(0Xi1Xj1Xn−i−j−30)+· · ·
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Because the sections of the walks arriving and leaving at 1 are independent (i.e.,the
walks have no memory), these numbers are multiplicative:

(8) #(00̄n−10) = #(0Xn−10)

+
∑
i

#(0Xi1)#(1Xn−i−20)

+
∑
i,j

#(0Xi1)#(1Xj1)#(1Xn−i−j−30) + · · ·

Furthermore

• the number of walks is independent from the direction, which means leaving
1 and arriving at 0 counts also leaving 0 and arriving at 1 (if the avoidances
are equivalent/swapped). These walks are bijections if each walk is mirrored
along the vertical line x = 1/2.
• the number of returns is shift-independent from the origin, which means

leaving 1 and arriving at 1 is the same as leaving 0 and arriving at 0 (if
avoidances are swapped accordingly).

Therefore

(9) #(00̄n−10) = #(0Xn−10)

+
∑
i

#(0Xi1)#(0Xn−i−21)

+
∑
i,j

#(0Xi1)#(0Xj0)#(0Xn−i−j−31) + · · ·

Multiplication by zn and summation over n induces for the generating functions a
geometric series:

(10) #z(00̄n−10) = #z(0Xn−10) + [#z(0Xn−11)]2 + [#z(0Xn−11)]2#z(0Xn−10)

+ [#(0Xn−11)]2[#z(0Xn−10)]2 + · · · = #z(0Xn−10) +
[#z(0Xn−11)]2

1−#z(0Xn−10)

5. Pasage to 1 avoiding 0 and 1

We classify the walks from 0 to 1 as walks that either first step on 1 or first step
on 0, and reorganize the count of trails with the criterion of mirror-symmetry and
shift-invariance as above:

#(0 ∗n−1 1) = #(0Xi1 ∗n−2−i 1) + #(0Xi0 ∗n−2−i 1)

=
∑
i

#(0Xi1)#(1 ∗n−2−i 1) +
∑
i

#(0Xi0)#(0 ∗n−2−i 1)

=
∑
i

#(0Xi1)#(0 ∗n−2−i 0) +
∑
i

#(0Xi0)#(0 ∗n−2−i 1).(11)

Moving on to the generating functions replaces convolution sums by simple prod-
ucts:

(12) #z(0 ∗n−1 1) = #z(0Xn−11)#z(0 ∗n−1 0) + #z(0Xn−10)#z(0 ∗n−1 1).

(13) ∴ [1−#z(0Xn−10)]#z(0 ∗n−1 1) = #z(0Xn−11)#z(0 ∗n−1 0).
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Isolate 1−#z(0Xn−10) of the left hand side of this equation and insert it into the
denominator in (10):

(14) #z(00̄n−10) = #z(0Xn−10) + #z(0Xn−11)
#z(0 ∗n−1 1)

#z(0 ∗n−1 0)
.

Regard the previous 2 equations as a 2 × 2 system of linear equations for two
unknown generating functions:

#z(0Xn−11) = =
1

2(a0 − a1)
− 1

2(a0 + a1)
;(15)

#z(0Xn−10) = = 1− 1

2(a0 + a1)
− 1

2(a0 − a1)
,(16)

where a0 = #z(0∗n−1 0) is given by (2) and a1 ≡ #z(0∗n−1 1) is given by (6). This
result was already obtained by Rubin and Weiss [7, (32)]. Explicit insertion of the
two hypergeometric series gives sequences [4, A337869,A337870]:

(17)

#z(0Xn−10) = 3z2 +13z4 +106z6 +1073z8 +12142z10 +147090z12 +1865772z14

+ 24463905z16 + 328887346z18 + · · · ,

(18) #z(0Xn−11) = z + 2z3 + 16z5 + 166z7 + 1934z9 + 24076z11 + 312906z13

+ 4191822z15 + 57433950z17 + 800740450z19 + · · · .

Due to poles of the hypergeometric functions both a0 → ∞ and a1 → ∞ as z →
1/4, so for the probability of either passing through 0 or through 1 we get the
complementary

#z(0Xn−10) → 1− 1

2(a0 − a1)
;(19)

#z(0Xn−11) → 1

2(a0 − a1)
.(20)

In a final manœvre we calculate that both probabilities are 1/2 as z → 1/4, because
in the denominators

(21) a0 − a1 =
∑

n=0,2,4,...

[

(
n

n/2

)
]2zn −

∑
n=1,3,5,...

[

(
n

(n− 1)/2

)
]2zn

= 1 +
∑

n=1,2,3,...

[

(
2n

n

)
]2z2n −

∑
n=0,1,2,...

[

(
2n + 1

n

)
]2z2n+1

= 1 +
∑
n≥0

[

(
2n + 2

n + 1

)
]2z2n+2 −

∑
n≥0

[

(
2n + 1

n

)
]2z2n+1

= 1+
∑
n≥0

[

(
2n + 2

n + 1

)
]2/42n+2−

∑
n≥0

[

(
2n + 1

n

)
]2/42n+1 = 1+

∑
n≥0

1

42n+2
[

(
2n + 2

n + 1

)
]2−4[

(
2n + 1

n

)
]2

= 1 +
∑
n≥0

1

42n+2

[(
2n + 2

n + 1

)
+ 2

(
2n + 1

n

)][(
2n + 2

n + 1

)
− 2

(
2n + 1

n

)]
︸ ︷︷ ︸

=0

= 1.
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In summary

(22) #z=1/4(0Xn−10) = #z=1/4(0Xn−11) =
1

2
.

Appendix A. Passage through (k, 0)

The walks of length n that end at the coordinate (k, 0) are counted by words of
length n with L left steps, R = L + k, U = D and R + L + U + D = n. The cases
k = 0, 1 have been evaluated in (2) and (6); the general counting numbers are [6]

(23)
(n−k)/2∑

L=0

(
n

L

)(
n− L

L + k

)(
n− 2L− k

(n− k)/2− L

)
=

(
n

(n− k)/2

) (n−k)/2∑
L=0

(
(n− k)/2

L

)(
(n + k)/2

L + k

)

=

[(
n

(n− k)/2

)]2
if n− k is even, otherwise 0. The generating functions are

(24) ak =
∑

n=k,k+2,k+4,...

[

(
n

(n− k)/2

)
]2zn

= zk4F3

(
k + 1

2
,
k + 1

2
, 1 +

k

2
, 1 +

k

2
; 1, 1 + k, 1 + k; (4z)2

)
.

The analysis in the main text remains valid if the vertex (k, 0) replaces the vertex
(1, 0) as the second marked vertex besides the origin, and ak replaces a1 in Eqs.
(15) and (16).
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