OFFSET
1,2
COMMENTS
An achiral coloring is identical to its reflection. The Schläfli symbols for the cube and regular octahedron are {4,3} and {3,4} respectively. They are mutually dual.
There are 24 elements in the automorphism group of the regular octahedron/cube that are not in the rotation group. They divide into five conjugacy classes. The first formula is obtained by averaging the cube vertex (octahedron face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Odd Cycle Indices
Inversion 1 x_2^4
Vertex rotation* 8 x_2^1x_6^1 Asterisk indicates that the
Edge rotation* 6 x_1^4x_2^2 operation is followed by an
Small face rotation* 3 x_4^2 inversion.
Large face rotation* 6 x_2^4
LINKS
Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
FORMULA
a(n) = n^2 * (7 + 2*n^2 + 3*n^4) / 12.
a(n) = 1*C(n,1) + 19*C(n,2) + 141*C(n,3) + 394*C(n,4) + 450*C(n,5) + 180*C(n,6), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
G.f.: x * (1+x) * (1 + 13*x + 62*x^2 + 13*x^3 + x^4) / (1-x)^7.
MATHEMATICA
Table[n^2(7+2n^2+3n^4)/12, {n, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert A. Russell, Sep 28 2020
STATUS
approved