The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337899 Number of chiral pairs of colorings of the edges of a regular tetrahedron using n or fewer colors. 2
 0, 1, 21, 140, 575, 1785, 4606, 10416, 21330, 40425, 71995, 121836, 197561, 308945, 468300, 690880, 995316, 1404081, 1943985, 2646700, 3549315, 4694921, 6133226, 7921200, 10123750, 12814425, 16076151, 20001996 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Each member of a chiral pair is a reflection, but not a rotation, of the other. A regular tetrahedron has 6 edges and Schläfli symbol {3,3}. LINKS FORMULA a(n) = (n-1) * n^2 * (n+1) * (n^2-2) / 24. a(n) = 1*C(n,2) + 18*C(n,3) + 62*C(n,4) + 75*C(n,5) + 30*C(n,6), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. a(n) = A046023(n) - A063842(n-1) = (A046023(n) - A037270(n)) / 2 = A063842(n-1) - A037270(n). G.f.: x^2 * (1+x) * (1+13x+x^2)/(1-x)^7. EXAMPLE For a(2)=1, two opposite edges and one edge connecting those have one color; the other three edges have the other color. MATHEMATICA Table[(n-1)n^2(n+1)(n^2-2)/24, {n, 40}] CROSSREFS Cf. A046023(unoriented), A063842(n-1) (oriented), A037270 (chiral). Other elements: A000332 (vertices and faces). Other polyhedra: A337406 (cube/octahedron). Row 3 of A327085 (chiral pairs of colorings of edges or ridges of an n-simplex). Sequence in context: A033595 A220388 A220151 * A200987 A107731 A003702 Adjacent sequences: A337896 A337897 A337898 * A337900 A337901 A337902 KEYWORD nonn AUTHOR Robert A. Russell, Sep 28 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 23:08 EDT 2023. Contains 361412 sequences. (Running on oeis4.)