|
|
A337901
|
|
The number of walks of length 2n+1 on the square lattice that start from the origin (0,0) and end at the vertex (3,0).
|
|
3
|
|
|
1, 25, 441, 7056, 108900, 1656369, 25050025, 378224704, 5712638724, 86394844900, 1308887012356, 19868414760000, 302198588499600, 4605510959127225, 70321771565375625, 1075697380745222400, 16483023079048102500, 252980753801047064100, 3888662839165553120100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*4F3(2,2,5/2,5/2; 1,4,4; 16*x).
D-finite with recurrence (n+2)^2*(n-1)^2*a(n) -4*n^2*(2*n+1)^2*a(n-1)=0.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,walk
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|