login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063842 Number of colorings of K_4 using at most n colors. 4
1, 11, 66, 276, 900, 2451, 5831, 12496, 24651, 45475, 79376, 132276, 211926, 328251, 493725, 723776, 1037221, 1456731, 2009326, 2726900, 3646776, 4812291, 6273411, 8087376, 10319375, 13043251, 16342236, 20309716, 25050026, 30679275, 37326201, 45133056 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Vladeta Jovovic, Formulae for the number T(n,k) of n-multigraphs on k nodes

Marko R. Riedel, Counting multigraphs up to isomorphism

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

a(n) = (1/4!)*(n^6 + 6*n^5 + 24*n^4 + 56*n^3 + 83*n^2 + 70*n + 24).

G.f.: (1 + 3*x + 7*x^2 + 3*x^3 + x^4)*(1+x)/(1-x)^7. - M. F. Hasler, Jan 19 2012

MATHEMATICA

Needs["Combinatorica`"]

Table[Total[Table[CycleIndex[KSubsetGroup[GraphData[{4, k}, "Automorphisms"], GraphData[{4, k}, "EdgeIndices"]], s], {k, 1, 11}]]/.Table[s[i] -> n, {i, 1, 4}], {n, 0, 30}]  (* Geoffrey Critzer, Oct 22 2012 *)

CoefficientList[Series[(1 + 3 x + 7 x^2 + 3 x^3 + x^4) (1 + x) / (1 - x)^7, {x, 0, 35}], x] (* Vincenzo Librandi, Jul 21 2013 *)

PROG

(MAGMA) [1/24*(n^6+6*n^5+24*n^4+56*n^3+83*n^2+70*n+24): n in [0..35]]; // Vincenzo Librandi, Jul 21 2013

CROSSREFS

A row of A063841. Cf. A063843.

Sequence in context: A139611 A154617 A297751 * A162628 A247610 A008503

Adjacent sequences:  A063839 A063840 A063841 * A063843 A063844 A063845

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Aug 25 2001

EXTENSIONS

More terms from Vladeta Jovovic, Sep 02 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 19:19 EST 2018. Contains 317116 sequences. (Running on oeis4.)