|
|
A337406
|
|
Number of chiral pairs of colorings of the edges of a cube (or regular octahedron) using n or fewer colors.
|
|
8
|
|
|
0, 74, 10704, 345640, 5062600, 45246810, 288005144, 1430618784, 5881281480, 20827126650, 65370603320, 185725346664, 485325996064, 1181031257770, 2702889008400, 5863794289280, 12137528310384, 24099966466794
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Each member of a chiral pair is a reflection, but not a rotation, of the other. Both the cube and the octahedron have 12 edges.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n-1) * n^2 * (n+1) * (n^8 + n^6 - 2n^4 + 8) / 48.
a(n) = 74*C(n,2) + 10482*C(n,3) + 303268*C(n,4) + 3440700*C(n,5) + 19842840*C(n,6) + 65867760*C(n,7) + 133580160*C(n,8) + 168399000*C(n,9) + 128898000*C(n,10) + 54885600*C(n,11) + 9979200*C(n,12), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
G.f.: 2 * (37*x^2 + 4871*x^3 + 106130*x^4 + 691514*x^5 + 1692248*x^6 + 1692248*x^7 + 691514*x^8 + 106130*x^9 + 4871*x^10 + 37*x^11) / (1-x)^13.
|
|
MATHEMATICA
|
Table[(n-1)n^2(n+1)(n^8+n^6-2n^4+8)/48, {n, 20}]
|
|
CROSSREFS
|
Row 3 of A337409 (orthotope edge colorings) and A337413 (orthoplex edge colorings).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|