The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337406 Number of chiral pairs of colorings of the edges of a cube (or regular octahedron) using n or fewer colors. 8
 0, 74, 10704, 345640, 5062600, 45246810, 288005144, 1430618784, 5881281480, 20827126650, 65370603320, 185725346664, 485325996064, 1181031257770, 2702889008400, 5863794289280, 12137528310384, 24099966466794 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Each member of a chiral pair is a reflection, but not a rotation, of the other. Both the cube and the octahedron have 12 edges. LINKS Table of n, a(n) for n=1..18. FORMULA a(n) = (n-1) * n^2 * (n+1) * (n^8 + n^6 - 2n^4 + 8) / 48. a(n) = 74*C(n,2) + 10482*C(n,3) + 303268*C(n,4) + 3440700*C(n,5) + 19842840*C(n,6) + 65867760*C(n,7) + 133580160*C(n,8) + 168399000*C(n,9) + 128898000*C(n,10) + 54885600*C(n,11) + 9979200*C(n,12), where the coefficient of C(n,k) is the number of colorings using exactly k colors. a(n) = (A060530(n) - A331351(n)) / 2 = A060530(n) - A199406(n) = A199406(n) - A331351(n). G.f.: 2 * (37*x^2 + 4871*x^3 + 106130*x^4 + 691514*x^5 + 1692248*x^6 + 1692248*x^7 + 691514*x^8 + 106130*x^9 + 4871*x^10 + 37*x^11) / (1-x)^13. MATHEMATICA Table[(n-1)n^2(n+1)(n^8+n^6-2n^4+8)/48, {n, 20}] CROSSREFS Cf. A060530 (oriented), A199406 (unoriented), A331351 (achiral). Row 3 of A337409 (orthotope edge colorings) and A337413 (orthoplex edge colorings). Sequence in context: A262764 A107678 A093274 * A250906 A268090 A278378 Adjacent sequences: A337403 A337404 A337405 * A337407 A337408 A337409 KEYWORD nonn,easy AUTHOR Robert A. Russell, Aug 26 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 14:20 EDT 2023. Contains 363128 sequences. (Running on oeis4.)