The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144656 a(n) = (n mod 2) if n <= 3, otherwise a(n) = (n^2-5n+7)*(n-2)*a(n-1)/(n-3) + (n^2-5n+7)*a(n-2) - (n-2)*a(n-3)/(n-3). 1
 0, 1, 0, 1, 4, 49, 900, 24649, 944784, 48455521, 3210355600, 267186643801, 27307626948900, 3363915436531441, 491705171699154084, 84158959760104032049, 16675767262618669710400, 3787671541267275818341249, 977702867682508392324162624, 284628954669920840314598014801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Terms are squares; square roots give A001053. REFERENCES M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 35. LINKS S. B. Ekhad, Problem 10356, Amer. Math. Monthly, 101 (1994), 75. MAPLE a:=proc(n) option remember; local m; if n=0 then RETURN(0); fi; if n=1 then RETURN(1); fi; if n=2 then RETURN(0); fi; if n=3 then RETURN(1); fi; m:=n-3; RETURN((m^2+m+1)*(m+1)*a(n-1)/m+(m^2+m+1)*a(n-2)-(m+1)*a(n-3)/m); end; PROG (PARI) a=vector(10^3); for(n=1, 3, a[n]=n%2); for(n=4, #a, a[n] = (n^2-5*n+7)*(n-2)*a[n-1]/(n-3) + (n^2-5*n+7)*a[n-2] - (n-2)*a[n-3]/(n-3)); concat(0, a) \\ Altug Alkan, Apr 04 2018 CROSSREFS Cf. A001053. Sequence in context: A055793 A202829 A204233 * A121275 A329328 A188682 Adjacent sequences:  A144653 A144654 A144655 * A144657 A144658 A144659 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 30 2009 EXTENSIONS Typo in name corrected by Rogério Serôdio, Apr 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 13:18 EST 2020. Contains 332306 sequences. (Running on oeis4.)