login
A273233
Squares that remain squares if you decrease them by 7 times a repunit with the same number of digits.
3
81, 841, 7921, 77841, 790321, 863041, 982081, 9991921, 79014321, 80299521, 94653441, 7901254321, 8635799041, 778133930161, 790123654321, 794396081521, 816057482881, 965485073281, 989863816561, 79012347654321, 86358529399041, 857789228465521, 7901234587654321, 8547733055510401
OFFSET
1,1
COMMENTS
Any number ends in 1.
LINKS
EXAMPLE
81 - 7*11 = 4 = 2^2;
841 - 7*111 = 64 = 8^2;
7921 - 7*1111 = 144 = 12^2.
MAPLE
P:=proc(q, h) local n; for n from 1 to q do
if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9), integer) then print(n^2);
fi; od; end: P(10^9, 7);
MATHEMATICA
sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 7 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Paolo P. Lava, May 18 2016
STATUS
approved