login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326084
E.g.f.: Sum_{n>=0} 2^(n^2) * (1+x)^(2^n) * x^n / n!.
1
1, 3, 24, 716, 83072, 39087872, 75401303680, 594443022065664, 19031019101108305920, 2460683831564819120390144, 1280084328364612961085149413376, 2672769650751366373008246767117336576, 22366167127368888262542197147193185822310400, 749477178086404731802603163228930825036318134763520
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 2 and p = log(1+x)/x, r = x.
FORMULA
E.g.f.: Sum_{n>=0} (2^n*x + log(1+x))^n / n!.
E.g.f.: Sum_{n>=0} log( exp(2^n*x) * (1+x) )^n / n!.
E.g.f.: Sum_{n>=0} 2^(n^2) * (1+x)^(2^n) * x^n / n!.
a(n) = n! * Sum_{k=0..n} 2^(k^2) * binomial(2^k,n-k) / k!.
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 24*x^2/2! + 716*x^3/3! + 83072*x^4/4! + 39087872*x^5/5! + 75401303680*x^6/6! + 594443022065664*x^7/7! + 19031019101108305920*x^8/8! + ...
such that
A(x) = 1 + 2*(1+x)^2*x + 2^4*(1+x)^4*x^2/2! + 2^9*(1+x)^8*x^3/3! + 2^16*(1+x)^16*x^4/4! + 2^25*(1+x)^32*x^5/5! + 2^36*(1+x)^64*x^6/6! + ...
also
A(x) = 1 + (2*x + log(1+x)) + (2^2*x + log(1+x))^2/2! + (2^3*x + log(1+x))^3/3! + (2^4*x + log(1+x))^4/4! + (2^5*x + log(1+x))^5/5! + (2^6*x + log(1+x))^6/6! + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, 2^(m^2) * (1+x +x*O(x^n))^(2^m) * x^m/m!)); n!*polcoeff(A, n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n) = n! * sum(k=0, n, 2^(k^2) * binomial(2^k, n-k)/k!)}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Cf. A326085.
Sequence in context: A202944 A056207 A297561 * A301525 A277177 A226053
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 10 2019
STATUS
approved