login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326086
E.g.f.: Sum_{n>=0} 2^(n^2) * W(x)^(2^n) * x^n/n!, where W(x) = LambertW(-x)/(-x).
1
1, 3, 27, 768, 84749, 39243888, 75455521471, 594516437142848, 19031406668609378713, 2460691831851012225530880, 1280084975976508309274383168595, 2672769856819326065224240364145984960, 22366167385647246803941382124073221290016997, 749477179363850141651152204676749367782390886880128, 100519481588580178976399215728025075471667058977184517953799, 53944581177412223136063119942558559584461301815948131410099383585344
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * x^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*x) * x^n/n!;
here, q = 2 and p = LambertW(-x)/(-x).
FORMULA
E.g.f. Sum_{n>=0} a(n)*x^n/n! may be defined by the following sums:
(1) Sum_{n>=0} (2^n + W(x))^n * x^n/n!,
(2) Sum_{n>=0} log(exp(2^n*x) * W(x))^n / n!,
(3) Sum_{n>=0} 2^(n^2) * W(x)^(2^n) * x^n/n!,
where W(x) = exp(x*W(x)) = LambertW(-x)/(-x).
FORMULAS FOR TERMS.
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(k*(k+1)) * (2^k + n-k)^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n*k) * (1 + (n-k)/2^k)^(n-k-1).
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 27*x^2/2! + 768*x^3/3! + 84749*x^4/4! + 39243888*x^5/5! + 75455521471*x^6/6! + 594516437142848*x^7/7! + 19031406668609378713*x^8/8! + ...
such that
A(x) = W(x) + 2*W(x)^2*x + 2^4*W(x)^4*x^2/2! + 2^9*W(x)^8*x^3/3! + 2^16*W(x)^16*x^4/4! + 2^25*W(x)^32*x^5/5! + 2^36*W(x)^64*x^6/6! + ...
also
A(x) = 1 + (2 + W(x))*x + (2^2 + W(x))^2*x^2/2! + (2^3 + W(x))^3*x^3/3! + (2^4 + W(x))^4*x^4/4! + (2^5 + W(x))^5*x^5/5! + (2^6 + W(x))^6*x^6/6! + ...
where W(x) begins
W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! + ... + (n+1)^(n-1)*x^n/n! + ...
so that W(x) = exp(x*W(x)) = LambertW(-x)/(-x).
PROG
(PARI) /* binomial formula for terms */
{a(n) = sum(k=0, n, binomial(n, k) * 2^(k*(k+1)) * (2^k + n-k)^(n-k-1) )}
for(n=0, 15, print1(a(n), ", "))
(PARI) /* E.g.f.: Sum_{n>=0} (2^n + W(x))^n * x^n/n! */
{a(n) = my(W = serreverse(x/exp(x +x^2*O(x^n)))/x);
n!*polcoeff( sum(m=0, n, (2^m + W)^m * x^m/m!), n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) /* E.g.f.: Sum_{n>=0} 2^(n^2) * W(x)^(2^n) * x^n/n! */
{a(n) = my(W = serreverse(x/exp(x +x^2*O(x^n)))/x);
n!*polcoeff( sum(m=0, n, 2^(m^2) * W^(2^m) * x^m/m!), n)}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Cf. A326087.
Sequence in context: A052269 A138525 A185149 * A194500 A012505 A331439
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 11 2019
STATUS
approved