login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326089 G.f. A(x) satisfies: 1 + 2 * Sum_{n>=1} A(x)^(n*(n+1)/2) * x^n  =  Sum_{n>=0} (1 + x*A(x)^n)^n * x^n. 1
1, 2, 10, 90, 1002, 12422, 164866, 2294842, 33092066, 490458214, 7430814938, 114644436410, 1796058433818, 28510908961974, 457838834794898, 7427992562185162, 121633693137277970, 2008722124583739830, 33435242160622759594, 560667079009101397162, 9468303108907658924874, 160991659768738107957670, 2755748012982878460654370, 47485639148930596873348890 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..23.

FORMULA

The g.f. A(x) allows for the following sums to be equal:

(1) B(x) = 1 + 2 * Sum_{n>=1} A(x)^(n*(n+1)/2) * x^n.

(2) B(x) = Sum_{n>=0} (1 + x*A(x)^n)^n * x^n.

(3) B(x) = Sum_{n>=0} A(x)^(n^2) * x^n / (1 - x*A(x)^n)^(n+1).

EXAMPLE

G.f.: A(x) = 1 + 2*x + 10*x^2 + 90*x^3 + 1002*x^4 + 12422*x^5 + 164866*x^6 + 2294842*x^7 + 33092066*x^8 + 490458214*x^9 + 7430814938*x^10 + ...

such that the following sum

B(x) = 1 + 2*A(x)*x + 2*A(x)^3*x^2 + 2*A(x)^6*x^3 + 2*A(x)^10*x^4 + 2*A(x)^15*x^5 + 2*A(x)^21*x^6 + 2*A(x)^28*x^7 + ... + 2*A(x)^(n*(n+1)/2)*x^n + ...

equals

B(x) = 1 + (1 + x*A(x))*x + (1 + x*A(x)^2)^2*x^2 + (1 + x*A(x)^3)^3*x^3 + (1 + x*A(x)^4)^4*x^4 + (1 + x*A(x)^5)^5*x^5 + ... + (1 + x*A(x)^n)^n*x^n + ...

as well as

B(x) = 1/(1 - x) + A(x)*x/(1 - x*A(x))^2 + A(x)^4*x^2/(1 - x*A(x)^2)^3 + A(x)^9*x^3/(1 - x*A(x)^3)^4 + A(x)^16*x^4/(1 - x*A(x)^4)^5 + ...

where

B(x) = 1 + 2*x + 6*x^2 + 34*x^3 + 290*x^4 + 3082*x^5 + 37078*x^6 + 482122*x^7 + 6611538*x^8 + 94256914*x^9 + 1384318518*x^10 + ...

PROG

(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, (1 + Ser(A)^m)^m*x^m - 2*x^m*Ser(A)^(m*(m+1)/2) ), #A)); A[n+1]}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Sequence in context: A326554 A055779 A198434 * A277403 A179423 A320962

Adjacent sequences:  A326086 A326087 A326088 * A326090 A326091 A326092

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 28 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 19:53 EDT 2019. Contains 328319 sequences. (Running on oeis4.)