login
A381449
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x * cosh(x))^2 ).
0
1, 2, 10, 90, 1224, 22450, 517920, 14395514, 468414464, 17474840226, 735559614720, 34491849224602, 1783268816102400, 100786369113730898, 6182264844496971776, 409065938149354422330, 29043282491002728284160, 2202461172795524123296834, 177675452451923238962528256
OFFSET
0,2
COMMENTS
As stated in the comment of A185951, A185951(n,0) = 0^n.
FORMULA
E.g.f. A(x) satisfies A(x) = (1 + x*A(x) * cosh(x*A(x)))^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A381447.
a(n) = (1/(n+1)) * Sum_{k=0..n} k! * binomial(2*n+2,k) * A185951(n,k).
PROG
(PARI) a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*binomial(2*n+2, k)*a185951(n, k))/(n+1);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Feb 23 2025
STATUS
approved