OFFSET
0,6
COMMENTS
All such graphs are cactus graphs (with bridges allowed).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1750 (rows 0..100)
R. J. Mathar, Counting connected graphs without overlapping cycles, arXiv:1808.06264 [math.CO] (2018).
Wikipedia, Cactus graph.
FORMULA
T(3*n, n) = A380634(n).
EXAMPLE
Triangle begins:
1;
1;
1;
1, 1;
2, 2;
3, 5;
6, 13, 1;
11, 33, 4;
23, 89, 21;
47, 240, 85, 2;
106, 657, 345, 16;
235, 1806, 1289, 109;
551, 5026, 4713, 627, 6;
1301, 13999, 16622, 3259, 64;
3159, 39260, 57535, 15576, 598;
...
PROG
(PARI)
EulerMTS(p)={my(n=serprec(p, x)-1, vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i))}
raise(p, d) = {my(n=serprec(p, x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d, y^d])}
R(n, y)={my(g=x+O(x^2)); for(n=2, n, my(p=x*EulerMTS(g), p2=raise(p, 2)); g=p + p*y*(p^2/(1 - p) + (1 + p)*p2/(1 - p2))/2); g}
G(n, y=1)={my(g=R(n, y), p = x*EulerMTS(g) + O(x*x^n));
my( r=((1 + p)^2/(1 - raise(p, 2)) - 1)/2 );
my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p, d))) );
print(g-p);
1 + p + (raise(g, 2) - g^2 + y*(r + c - 2*p - p^2 - raise(p, 2)))/2 }
T(n)={[Vecrev(p) | p<-Vec(G(n, y))]}
{my(A=T(15)); for(i=1, #A, print(A[i]))}
CROSSREFS
KEYWORD
nonn,tabf,new
AUTHOR
Andrew Howroyd, Feb 24 2025
STATUS
approved