login
A380634
Number of unlabeled 2,3 cacti (triangular cacti with bridges) with n triangles and every node contained in exactly one triangle.
0
1, 1, 1, 2, 6, 18, 66, 265, 1140, 5186, 24588, 120062, 600884, 3066490, 15907266, 83665520, 445317808, 2394928214, 12997988041, 71116953074, 391931826699, 2174062325068, 12130745830640, 68049392678632, 383601371168527, 2172093593344465, 12349917974708867
OFFSET
0,4
COMMENTS
The number of vertices is 3*n and for n > 0, the number of bridges is n-1.
FORMULA
a(n) = A380631(3*n,n) = A381467(3*n,n).
EXAMPLE
The a(3) = 2 cactus graphs are:
o o o o o---o o
/ \ / \ / \ / \ \ / / \
o---o---o---o---o---o o---o---o---o---o
PROG
(PARI) \\ here R(n) gives A287891 as g.f.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
raise(p, d) = {my(n=serprec(p, x)-1); subst(p + O(x^(n\d+1)), x, x^d)}
R(n)={my(p=1+O(x)); for(n=1, n, p = 1 + x*Ser(EulerT(Vec(p*(p^2 + raise(p, 2))/2)))); p}
seq(n)={ my(p=R(n-1), g=p*(p^2 + raise(p, 2))/2); Vec(1 + x*(x*(raise(g, 2) - g^2) + p*raise(p, 2) + (p^3 + 2*raise(p, 3))/3)/2) }
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Andrew Howroyd, Feb 24 2025
STATUS
approved