OFFSET
0,4
COMMENTS
The number of vertices is 3*n and for n > 0, the number of bridges is n-1.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
Wikipedia, Cactus graph.
EXAMPLE
The a(3) = 2 cactus graphs are:
o o o o o---o o
/ \ / \ / \ / \ \ / / \
o---o---o---o---o---o o---o---o---o---o
PROG
(PARI) \\ here R(n) gives A287891 as g.f.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
raise(p, d) = {my(n=serprec(p, x)-1); subst(p + O(x^(n\d+1)), x, x^d)}
R(n)={my(p=1+O(x)); for(n=1, n, p = 1 + x*Ser(EulerT(Vec(p*(p^2 + raise(p, 2))/2)))); p}
seq(n)={ my(p=R(n-1), g=p*(p^2 + raise(p, 2))/2); Vec(1 + x*(x*(raise(g, 2) - g^2) + p*raise(p, 2) + (p^3 + 2*raise(p, 3))/3)/2) }
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Andrew Howroyd, Feb 24 2025
STATUS
approved