login
A380633
Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes of degree at most 3 with k cycles and each node a member of exactly one cycle, 0 <= k <= floor(n/3).
0
1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 3, 3, 0, 1, 3, 6, 0, 1, 4, 11, 2, 0, 1, 4, 17, 5, 0, 1, 5, 26, 17, 0, 1, 5, 36, 37, 2, 0, 1, 6, 50, 78, 12, 0, 1, 6, 65, 140, 44, 0, 1, 7, 85, 248, 131, 4, 0, 1, 7, 106, 396, 325, 23
OFFSET
0,18
COMMENTS
All such graphs are cactus graphs (with bridges allowed).
FORMULA
T(3*n,n) = A000672(n).
EXAMPLE
Triangle begins:
1;
0;
0;
0, 1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 1;
0, 1, 2;
0, 1, 2, 1;
0, 1, 3, 3;
0, 1, 3, 6;
0, 1, 4, 11, 2;
0, 1, 4, 17, 5;
0, 1, 5, 26, 17;
0, 1, 5, 36, 37, 2;
...
PROG
(PARI)
raise(p, d) = {my(n=serprec(p, x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d, y^d])}
R(n, y)={my(g=O(x^3)); for(n=1, (n-1)\2, my(p=x*(1 + g), p2=raise(p, 2)); g=x*y*(p^2/(1 - p) + (1 + p)*p2/(1 - p2))/2); g}
G(n, y=1)={my(g=R(n, y), p = x*(1+g) + O(x*x^n));
my( r=((1 + p)^2/(1 - raise(p, 2)) - 1)/2 );
my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p, d))) );
1 + (raise(g, 2) - g^2 + y*(r + c - 2*p - p^2 - raise(p, 2)))/2 }
T(n)={[Vecrev(p) | p<-Vec(G(n, y))]}
{my(A=T(15)); for(i=1, #A, print(A[i]))}
CROSSREFS
Columns 0..3 are A000007, A000012(n+3), A004526(n+4), A003453(n+4).
Row sums are A380805.
Cf. A000672, A380631 (with vertices of any degree).
Sequence in context: A292047 A292049 A320341 * A054523 A161363 A293136
KEYWORD
nonn,tabf,new
AUTHOR
Andrew Howroyd, Feb 24 2025
STATUS
approved