login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003453
Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation and reflection.
(Formerly M2542)
5
1, 3, 6, 11, 17, 26, 36, 50, 65, 85, 106, 133, 161, 196, 232, 276, 321, 375, 430, 495, 561, 638, 716, 806, 897, 1001, 1106, 1225, 1345, 1480, 1616, 1768, 1921, 2091, 2262, 2451, 2641, 2850, 3060, 3290, 3521, 3773, 4026
OFFSET
5,2
COMMENTS
In other words, the number of 2-dissections of an n-gon modulo the dihedral action.
John W. Layman observes that this appears to be the alternating sum transform (PSumSIGN) of A005744.
Row 2 of the convolution array A213847. - Clark Kimberling, Jul 05 2012
Number of nonisomorphic outer planar graphs of order n >= 3 and size n+2. - Christian Barrientos and Sarah Minion, Feb 27 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Douglas Bowman and Alon Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv preprint arXiv:1209.6270 [math.CO], 2012. See Theorem 5(2).
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
Petr Lisonek, Combinatorial families enumerated by quasi-polynomials, Journal of Combinatorial Theory, Series A, Volume 114, Issue 4, May 2007, Pages 619-630.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
N. J. A. Sloane, Transforms
FORMULA
G.f.: (1+x-x^2) / ((1-x)^4*(1+x)^2).
See also the Maple code.
a(5)=1, a(6)=3, a(7)=6, a(8)=11, a(9)=17, a(10)=26, a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a (n-6). - Harvey P. Dale, Jan 28 2013
a(n) = (2*n^3-6*n^2-23*n+63+3*(n-5)*(-1)^n)/48, for n>=5. - Luce ETIENNE, Apr 07 2015
a(n) = (1/2) * Sum_{i=1..n-4} floor((i+1)*(n-i-2)/2). - Wesley Ivan Hurt, May 07 2016
MAPLE
T52:= proc(n)
if n mod 2 = 0 then (n-4)*(n-2)*(n+3)/24;
else (n-3)*(n^2-13)/24; fi end;
[seq(T52(n), n=5..80)]; # N. J. A. Sloane, Dec 28 2012
MATHEMATICA
nd[n_]:=If[EvenQ[n], (n-4)(n-2) (n+3)/24, (n-3) (n^2-13)/24]; Array[nd, 50, 5] (* or *) LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 3, 6, 11, 17, 26}, 50] (* Harvey P. Dale, Jan 28 2013 *)
PROG
(PARI) \\ See A295419 for DissectionsModDihedral()
{ my(v=DissectionsModDihedral(apply(i->y + O(y^4), [1..40]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017
CROSSREFS
Column 3 of A295634.
Sequence in context: A377407 A107957 A000603 * A011901 A169739 A109471
KEYWORD
nonn,easy,nice
EXTENSIONS
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 24 2017
STATUS
approved