OFFSET
0,3
COMMENTS
Number of n-covers of a 2-set.
Boolean switching functions a(n,s) for s = 2.
Without the initial 0, this is row 1 of the convolution array A213778. - Clark Kimberling, Jun 21 2012
a(n) equals the second column of the triangle A355754. - Eric W. Weisstein, Mar 12 2024
REFERENCES
R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
A. V. Jayanthan, S. A. Seyed Fakhari, I. Swanson, and S. Yassemi, Induced matching, ordered matching and Castelnuovo-Mumford regularity of bipartite graphs, arXiv:2405.06781 [math.AC], 2024. See p. 17.
Vladeta Jovovic, Binary matrices up to row and column permutations.
Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
FORMULA
a(n) = A002623(n) - (n+1).
a(n) = n*(n-1)/2 + Sum_{j=1..floor((n+1)/2)} (n-2*j+1)*(n-2*j)/2. - N. J. A. Sloane, Nov 28 2003
From R. J. Mathar, Apr 01 2010: (Start)
a(n) = 5*n/12 - 1/16 + 5*n^2/8 + n^3/12 + (-1)^n/16.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). (End)
a(n) = A181971(n+1, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) + a(n+1) = A008778(n). - R. J. Mathar, Mar 13 2021
E.g.f.: (x*(2*x^2 + 21*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 27*x - 3)*sinh(x))/24. - Stefano Spezia, Jul 27 2022
MATHEMATICA
CoefficientList[Series[x (1+x-x^2)/((1-x)^4(1+x)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 4, 9, 17}, 50] (* Harvey P. Dale, Apr 10 2012 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; -1, 3, -2, -2, 3]^n*[0; 1; 4; 9; 17])[1, 1] \\ Charles R Greathouse IV, Feb 06 2017
CROSSREFS
John W. Layman observes that A003453 appears to be the alternating sum transform (PSumSIGN) of A005744.
Cf. A355754.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Additional comments from Alford Arnold
STATUS
approved