login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005744
Expansion of x*(1+x-x^2)/((1-x)^4*(1+x)).
(Formerly M3360)
13
0, 1, 4, 9, 17, 28, 43, 62, 86, 115, 150, 191, 239, 294, 357, 428, 508, 597, 696, 805, 925, 1056, 1199, 1354, 1522, 1703, 1898, 2107, 2331, 2570, 2825, 3096, 3384, 3689, 4012, 4353, 4713, 5092, 5491, 5910, 6350, 6811, 7294, 7799, 8327, 8878, 9453, 10052
OFFSET
0,3
COMMENTS
Number of n-covers of a 2-set.
Boolean switching functions a(n,s) for s = 2.
Without the initial 0, this is row 1 of the convolution array A213778. - Clark Kimberling, Jun 21 2012
a(n) equals the second column of the triangle A355754. - Eric W. Weisstein, Mar 12 2024
REFERENCES
R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
A. V. Jayanthan, S. A. Seyed Fakhari, I. Swanson, and S. Yassemi, Induced matching, ordered matching and Castelnuovo-Mumford regularity of bipartite graphs, arXiv:2405.06781 [math.AC], 2024. See p. 17.
FORMULA
a(n) = A002623(n) - (n+1).
a(n) = n*(n-1)/2 + Sum_{j=1..floor((n+1)/2)} (n-2*j+1)*(n-2*j)/2. - N. J. A. Sloane, Nov 28 2003
From R. J. Mathar, Apr 01 2010: (Start)
a(n) = 5*n/12 - 1/16 + 5*n^2/8 + n^3/12 + (-1)^n/16.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). (End)
a(n) = A181971(n+1, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) + a(n+1) = A008778(n). - R. J. Mathar, Mar 13 2021
E.g.f.: (x*(2*x^2 + 21*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 27*x - 3)*sinh(x))/24. - Stefano Spezia, Jul 27 2022
MATHEMATICA
CoefficientList[Series[x (1+x-x^2)/((1-x)^4(1+x)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 4, 9, 17}, 50] (* Harvey P. Dale, Apr 10 2012 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; -1, 3, -2, -2, 3]^n*[0; 1; 4; 9; 17])[1, 1] \\ Charles R Greathouse IV, Feb 06 2017
CROSSREFS
John W. Layman observes that A003453 appears to be the alternating sum transform (PSumSIGN) of A005744.
Cf. A355754.
Sequence in context: A008055 A301019 A137441 * A027367 A348238 A009879
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Alford Arnold
STATUS
approved