login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295419
Number of dissections of an n-gon by nonintersecting diagonals into polygons with a prime number of sides counted up to rotations and reflections.
12
1, 1, 2, 4, 8, 23, 64, 222, 752, 2805, 10475, 40614, 158994, 633456, 2548241, 10362685, 42485242, 175557329, 730314350, 3056971164, 12867007761, 54434131848, 231354091945, 987496927875, 4231561861914, 18198894300129, 78533356685275, 339958801585826
OFFSET
3,3
COMMENTS
a(n) first differs from A290816(n) at n=9 since this sequence does not allow the trivial dissection of a nonagon into a single nonagon.
LINKS
E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
MATHEMATICA
DissectionsModDihedral[v_] := Module[{n = Length[v], q, vars, u, R, Q, T, p}, q = Table[0, {n}]; q[[1]] = InverseSeries[x - Sum[x^i v[[i]], {i, 3, Length[v]}]/x + O[x]^(n+1)]; For[i = 2, i <= n, i++, q[[i]] = q[[i-1]] q[[1]]]; vars = Variables[q[[1]]]; u[m_, r_] := Normal[(q[[r]] + O[x]^(Quotient[n, m]+1))] /. Thread[vars -> vars^m]; R = Sum[v[[2i+1]] u[2, i], {i, 1, (Length[v]-1)/2 // Floor}]; Q = Sum[v[[2i]] u[2, i-1], {i, 2, Length[v]/2 // Floor}]; T = Sum[v[[i]] Sum[EulerPhi[d] u[d, i/d], {d, Divisors[i]}]/i, {i, 3, Length[v]}]; p = O[x]^n - x^2 + (x u[1, 1] + u[2, 1] + (Q u[2, 1] - u[1, 2] + (x+R)^2/(1-Q))/2 + T)/2; Drop[ CoefficientList[p, x], 3]];
DissectionsModDihedral[Boole[PrimeQ[#]]& /@ Range[1, 31]] (* Jean-François Alcover, Sep 25 2019, after Andrew Howroyd *)
PROG
(PARI) \\ number of dissections into parts defined by set.
DissectionsModDihedral(v)={my(n=#v);
my(q=vector(n)); q[1]=serreverse(x-sum(i=3, #v, x^i*v[i])/x + O(x*x^n));
for(i=2, n, q[i]=q[i-1]*q[1]);
my(vars=variables(q[1]));
my(u(m, r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m, vars)));
my(R=sum(i=1, (#v-1)\2, v[2*i+1]*u(2, i)), Q=sum(i=2, #v\2, v[2*i]*u(2, i-1)), T=sum(i=3, #v, my(c=v[i]); if(c, c*sumdiv(i, d, eulerphi(d)*u(d, i/d))/i)));
my(p=O(x*x^n) - x^2 + (x*u(1, 1) + u(2, 1) + (Q*u(2, 1) - u(1, 2) + (x+R)^2/(1-Q))/2 + T)/2);
vector(n, i, polcoeff(p, i))}
DissectionsModDihedral(apply(v->isprime(v), [1..25]))
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Nov 22 2017
STATUS
approved