login
A001004
Number of nonequivalent dissections of an (n+2)-gon by nonintersecting diagonals up to rotation and reflection.
(Formerly M0898 N0339)
20
1, 1, 2, 3, 9, 20, 75, 262, 1117, 4783, 21971, 102249, 489077, 2370142, 11654465, 57916324, 290693391, 1471341341, 7504177738, 38532692207, 199076194985, 1034236705992, 5400337050086, 28329240333758, 149244907249629
OFFSET
0,3
COMMENTS
Original name: number of symmetric dissections of a polygon.
Also number of 2-connected outerplanar graphs on n unlabeled nodes. - Steven Finch, Dec 09 2004
REFERENCES
Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155. - N. J. A. Sloane, Apr 18 2014
Guanzhang Hu, Group theory method for enumeration of outerplanar graphs, Acta Math. Appl. Sinica 14 (1998) 381-387.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Steven R. Finch, Planar graph growth constants [Cached copy, with permission of the author]
E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.
R. C. Read, On general dissections of a polygon, Preprint (1974)
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
James Tilley, Stan Wagon, and Eric Weisstein, A Catalog of Facially Complete Graphs, arXiv:2409.11249 [math.CO], 2024. See pp. 7,11.
MATHEMATICA
f[x_, n_]:=x+Sum[(1/r)*Binomial[s-2, r-1]*Binomial[r+s-1, s]*x^s, {r, 1, n}, {s, 2, n}]; F[x_, n_]:=Series[((3x^2-2*x*f[x, n]+f[x, n]^2)- (2+2*x+7*x^2-4*x*f[x, n]+2*f[x, n]^2)*f[x^2, n]+ 2*f[x^2, n]^2)/(4*(2*f[x^2, n]-1))+Sum[If[Mod[k, d]==0, EulerPhi[d]*f[x^d, n]^(k/d)/k, 0], {k, 3, n}, {d, 1, k}]/2, {x, 0, n}]; F[x, 22] (Finch)
PROG
(PARI) \\ See A295419 for DissectionsModDihedral().
my(v=DissectionsModDihedral(apply(i->1, [1..30]))); v[3..#v] \\ Andrew Howroyd, Nov 22 2017
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Esa Peuha (esa.peuha(AT)helsinki.fi), Oct 21 2005
Name clarified by Andrew Howroyd, Nov 22 2017
STATUS
approved