login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161363
Inverse of the partition triangle A026794.
3
1, -1, 1, -2, 0, 1, -2, -1, 0, 1, -4, -1, 0, 0, 1, -3, -2, -1, 0, 0, 1, -7, -2, -1, 0, 0, 0, 1, -7, -3, -1, -1, 0, 0, 0, 1, -12, -3, -2, -1, 0, 0, 0, 0, 1, -13, -5, -2, -1, -1, 0, 0, 0, 0, 1, -22, -6, -3, -1, -1, 0, 0, 0, 0, 0, 1, -25, -7, -3, -2, -1, -1, 0, 0, 0, 0, 0, 1, -42, -9, -4, -2, -1, -1, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,4
COMMENTS
Row sums = A161375. A modified version of this triangle = A161364.
FORMULA
Triangle read by rows, inverse of A026794.
EXAMPLE
First few rows of the triangle =
1;
-1, 1;
-2, 0, 1;
-2, -1, 0, 1;
-4, -1, 0, 0, 1;
-3, -2, -1, 0, 0, 1;
-7, -2, -1, 0, 0, 0, 1;
-7, -3, -1, -1, 0, 0, 0, 1;
-12, -3, -2, -1, 0, 0, 0, 0, 1;
-13, -5, -2, -1, -1, 0, 0, 0, 0, 1;
-22, -6, -3, -1, -1, 0, 0, 0, 0, 0, 1;
...
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Jun 07 2009
EXTENSIONS
a(3) = 1 corrected and more terms from Georg Fischer, Jun 05 2023
STATUS
approved