login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse of the partition triangle A026794.
3

%I #14 Jun 05 2023 15:29:07

%S 1,-1,1,-2,0,1,-2,-1,0,1,-4,-1,0,0,1,-3,-2,-1,0,0,1,-7,-2,-1,0,0,0,1,

%T -7,-3,-1,-1,0,0,0,1,-12,-3,-2,-1,0,0,0,0,1,-13,-5,-2,-1,-1,0,0,0,0,1,

%U -22,-6,-3,-1,-1,0,0,0,0,0,1,-25,-7,-3,-2,-1,-1,0,0,0,0,0,1,-42,-9,-4,-2,-1,-1,0,0,0,0,0,0,1

%N Inverse of the partition triangle A026794.

%C Row sums = A161375. A modified version of this triangle = A161364.

%F Triangle read by rows, inverse of A026794.

%e First few rows of the triangle =

%e 1;

%e -1, 1;

%e -2, 0, 1;

%e -2, -1, 0, 1;

%e -4, -1, 0, 0, 1;

%e -3, -2, -1, 0, 0, 1;

%e -7, -2, -1, 0, 0, 0, 1;

%e -7, -3, -1, -1, 0, 0, 0, 1;

%e -12, -3, -2, -1, 0, 0, 0, 0, 1;

%e -13, -5, -2, -1, -1, 0, 0, 0, 0, 1;

%e -22, -6, -3, -1, -1, 0, 0, 0, 0, 0, 1;

%e ...

%Y Cf. A000041, A026794, A161364, A161375.

%K tabl,sign

%O 1,4

%A _Gary W. Adamson_, Jun 07 2009

%E a(3) = 1 corrected and more terms from _Georg Fischer_, Jun 05 2023