login
A377541
E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)))^2.
2
1, 2, 10, 90, 1184, 20650, 450252, 11803526, 361892848, 12712357170, 503564718260, 22212233618542, 1079909444635848, 57379354040049002, 3308238701451609772, 205715613407117613270, 13724187813695296374752, 977841609869801208944482, 74108335568947966714172004
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A364980.
a(n) = 2 * n! * Sum_{k=0..n} k^(n-k) * binomial(2*n-k+2,k)/( (2*n-k+2)*(n-k)! ).
PROG
(PARI) a(n) = 2*n!*sum(k=0, n, k^(n-k)*binomial(2*n-k+2, k)/((2*n-k+2)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 31 2024
STATUS
approved