login
A366268
G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^5.
11
1, 2, 10, 90, 930, 10530, 126282, 1576410, 20268930, 266591490, 3569991370, 48509238810, 667157894050, 9269347395490, 129908752970890, 1834347364277530, 26071297610067970, 372683901080814850, 5354668071305293450, 77286026066830771930
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(4*k+1,n-k) * binomial(5*k,k)/(4*k+1).
a(n) = A366273(n) + A366273(n-1).
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366366.
PROG
(PARI) a(n) = sum(k=0, n, binomial(4*k+1, n-k)*binomial(5*k, k)/(4*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 06 2023
STATUS
approved