login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366267
G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^4.
17
1, 2, 8, 56, 448, 3920, 36288, 349440, 3464448, 35125760, 362522624, 3795914240, 40224968704, 430579701760, 4648899846144, 50568103690240, 553632271155200, 6096025799852032, 67464070696927232, 750003531943903232, 8371814935842258944
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(3*k+1,n-k) * binomial(4*k,k)/(3*k+1).
a(n) = A366272(n) + A366272(n-1).
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366365.
MATHEMATICA
nmax = 20; A[_] = 1;
Do[A[x_] = 1 + x + x*A[x]^4 + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(3*k+1, n-k)*binomial(4*k, k)/(3*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 06 2023
STATUS
approved