login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326091
E.g.f.: Sum_{n>=0} (2 + exp(n*x))^n * x^n/n!.
5
1, 3, 11, 66, 601, 7418, 116505, 2248522, 52025473, 1414524690, 44471074249, 1595792690594, 64659403375137, 2931455146804330, 147550017664392457, 8189594420467104042, 498288959815836863233, 33061714451161940667554, 2381086262720126177230473, 185362512554618232339122578, 15539467373234774634135507361, 1398111233425766921500901239098, 134584560980879138160145116701257
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = 2, r = x.
LINKS
FORMULA
E.g.f.: Sum_{n>=0} (2 + exp(n*x))^n * x^n/n!.
E.g.f.: Sum_{n>=0} exp(n^2*x) * exp( 2*exp(n*x)*x ) * x^n/n!.
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 11*x^2/2! + 66*x^3/3! + 601*x^4/4! + 7418*x^5/5! + 116505*x^6/6! + 2248522*x^7/7! + 52025473*x^8/8! + 1414524690*x^9/9! + 44471074249*x^10/10! + ...
such that
A(x) = 1 + (2 + exp(x))*x + (2 + exp(2*x))^2*x^2/2! + (2 + exp(3*x))^3*x^3/3! + (2 + exp(4*x))^4*x^4/4! + (2 + exp(5*x))^5*x^5/5! + (2 + exp(6*x))^6*x^6/6! + ...
also
A(x) = exp(2*x) + exp(x + 2*exp(x)*x)*x + exp(4*x + 2*exp(2*x)*x)*x^2/2! + exp(9*x + 2*exp(3*x)*x)*x^3/3! + exp(16*x + 2*exp(4*x)*x)*x^4/4! + exp(25*x + 2*exp(5*x)*x)*x^5/5! + exp(36*x + 2*exp(6*x)*x)*x^6/6! + ...
PROG
(PARI) /* E.g.f.: Sum_{n>=0} (2 + exp(n*x))^n * x^n/n! */
{a(n) = my(A = sum(m=0, n, (2 + exp(m*x +x*O(x^n)))^m * x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* E.g.f.: Sum_{n>=0} exp( n^2*x + 2*exp(n*x)*x ) * x^n/n! */
{a(n) = my(A = sum(m=0, n, exp(m^2*x + 2*exp(m*x +x*O(x^n))*x ) * x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 28 2019
STATUS
approved