The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326094 E.g.f.: Sum_{n>=0} ((1+x)^n + 4)^n * x^n/n!. 5
 1, 5, 27, 185, 1693, 20565, 316375, 5948465, 133579065, 3517749125, 107024710675, 3714813650025, 145570443534805, 6383184292589525, 310815510350462415, 16694390352153656225, 983323269272332915825, 63186890982241624232325, 4409134435821084657726475, 332714992062735780407411225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS More generally, the following sums are equal: (1) Sum_{n>=0} (q^n + p)^n * r^n/n!, (2) Sum_{n>=0} q^(n^2) * exp(p*q^n*x) * r^n/n!; here, q = (1+x) and p = 4, r = x. In general, let F(x) be a formal power series in x such that F(0)=1, then Sum_{n>=0} m^n * F(q^n*r)^p * log( F(q^n*r) )^n / n! = Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p); here, F(x) = exp(x), q = 1+x, p = 4, r = x, m = 1. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA E.g.f.: Sum_{n>=0} ((1+x)^n + 4)^n * x^n/n!, E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(4*x*(1+x)^n) * x^n/n!. a(n) = 0 (mod 5) for n > 4. EXAMPLE E.g.f.: A(x) = 1 + 5*x + 27*x^2/2! + 185*x^3/3! + 1693*x^4/4! + 20565*x^5/5! + 316375*x^6/6! + 5948465*x^7/7! + 133579065*x^8/8! + 3517749125*x^9/9! + 107024710675*x^10/10! + ... such that A(x) = 1 + ((1+x) + 4)*x + ((1+x)^2 + 4)^2*x^2/2! + ((1+x)^3 + 4)^3*x^3/3! + ((1+x)^4 + 4)^4*x^4/4! + ((1+x)^5 + 4)^5*x^5/5! + ((1+x)^6 + 4)^6*x^6/6! + ((1+x)^7 + 4)^7*x^7/7! + ... also A(x) = 1 + (1+x)*exp(4*x*(1+x))*x + (1+x)^4*exp(4*x*(1+x)^2)*x^2/2! + (1+x)^9*exp(4*x*(1+x)^3)*x^3/3! + (1+x)^16*exp(4*x*(1+x)^4)*x^4/4! + (1+x)^25*exp(4*x*(1+x)^5)*x^5/5! + (1+x)^36*exp(4*x*(1+x)^6)*x^6/6! + ... PROG (PARI) /* E.g.f.: Sum_{n>=0} ((1+x)^n + 4)^n * x^n/n! */ {a(n) = my(A = sum(m=0, n, ((1+x)^m + 4 +x*O(x^n))^m * x^m/m! )); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* E.g.f.: Sum_{n>=0} (1+x)^(n^2) * exp(4*x*(1+x)^n) * x^n/n! */ {a(n) = my(A = sum(m=0, n, (1+x +x*O(x^n))^(m^2) * exp(4*x*(1+x)^m +x*O(x^n)) * x^m/m! )); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A326096, A326092, A326093. Cf. A326274. Sequence in context: A225309 A231091 A205774 * A232683 A240637 A023811 Adjacent sequences:  A326091 A326092 A326093 * A326095 A326096 A326097 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 20:25 EST 2021. Contains 349435 sequences. (Running on oeis4.)