login
A231091
Number of distinct (modulo rotation) unicursal star polygons (not necessarily regular, no edge joins adjacent vertices) that can be formed by connecting the vertices of a regular n-gon.
5
0, 0, 0, 0, 1, 1, 5, 27, 175, 1533, 14361, 151575, 1735869, 21594863, 289365383, 4158887007, 63822480809, 1041820050629, 18027531255745, 329658402237171, 6352776451924233, 128686951765990343, 2733851297673484765, 60781108703102022027, 1411481990523638719737
OFFSET
1,7
COMMENTS
For polygons in general see A000939 and A000949, and especially the Golomb-Welch reference. - N. J. A. Sloane, Nov 21 2013
LINKS
Stewart Gordon, The five possible stars for n=7 (SVG file)
FORMULA
a(n) = (A370068(n) + A283184(n/2-1)/2)/2 for even n >= 4; a(n) = A370068(n)/2 for odd n. - Andrew Howroyd, Feb 24 2024
EXAMPLE
For n=5, only solution is the regular pentagram.
For n=6, only solution is the unicursal hexagram (see Wikipedia link).
For n=7, two regular heptagrams and three irregular forms are possible.
PROG
(PARI) \\ Requires a370068 from A370068, b(n) is A283184.
b(n)={subst(serlaplace(polcoef((1 - x)/(1 + (1 - 2*y)*x + 2*y*x^2) + O(x*x^n), n)), y, 1)}
a(n)={(if(n%2==0 && n > 2, b(n/2-1)/2) + a370068(n))/2} \\ Andrew Howroyd, Mar 01 2024
CROSSREFS
Cf. A000939 (if edges may join adjacent vertices), A000940, A002816 (rotations and reflections counted separately), A326411, A370459 (up to rotations and reflections), A370068 (directed edges).
Cf. A283184.
Sequence in context: A091101 A185622 A225309 * A205774 A367048 A326094
KEYWORD
nonn,nice
AUTHOR
Stewart Gordon, Nov 03 2013
EXTENSIONS
a(15) onwards from Andrew Howroyd, Feb 23 2024
STATUS
approved