login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326274
E.g.f.: Sum_{n>=0} ((1+x)^n - 1)^n * 4^n / n!.
4
1, 4, 64, 1920, 86464, 5304320, 418131456, 40727959552, 4765747597312, 655794545577984, 104360850604687360, 18948720298674028544, 3882059495694122090496, 889053986706845142876160, 225799026538694916941283328, 63163063632830911303738982400, 19344290761718462120859544846336, 6452149866509553556278434299117568, 2332867461867950308492384248149311488, 910538103145382496893587688740637114368, 382208425560563535419125500691963382333440
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = (1+x) and p = -1, r = 4.
In general, let F(x) be a formal power series in x such that F(0)=1, then
Sum_{n>=0} m^n * F(q^n*r)^p * log( F(q^n*r) )^n / n! =
Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p);
here, F(x) = exp(x), q = 1+x, p = -1, r = 4, m = 1.
LINKS
FORMULA
E.g.f. may be expressed by the following sums.
(1) Sum_{n>=0} ((1+x)^n - 1)^n * 4^n / n!.
(2) Sum_{n>=0} (1+x)^(n^2) * exp(-4*(1+x)^n) * 4^n / n!.
EXAMPLE
E.g.f: A(x) = 1 + 4*x + 64*x^2/2! + 1920*x^3/3! + 86464*x^4/4! + 5304320*x^5/5! + 418131456*x^6/6! + 40727959552*x^7/7! + 4765747597312*x^8/8! + 655794545577984*x^9/9! + 104360850604687360*x^10/10! +...
such that
A(x) = 1 + 4*((1+x) - 1) + 4^2*((1+x)^2 - 1)^2/2! + 4^3*((1+x)^3 - 1)^3/3! + 4^4*((1+x)^4 - 1)^4/4! + 4^5*((1+x)^5 - 1)^5/5! + 4^6*((1+x)^6 - 1)^6/6! + 4^7*((1+x)^7 - 1)^7/7! + ...
also
A(x) = 1 + 4*(1+x)*exp(-4*(1+x)) + 4^2*(1+x)^4*exp(-4*(1+x)^2)/2! + 4^3*(1+x)^9*exp(-4*(1+x)^3)/3! + 4^4*(1+x)^16*exp(-4*(1+x)^4)/4! + 4^5*(1+x)^25*exp(-4*(1+x)^5)/5! + 4^6*(1+x)^36*exp(-4*(1+x)^6)/6! + 4^7*(1+x)^49*exp(-4*(1+x)^7)/7! + ...
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, 4^m*((1+x+x*O(x^n))^m-1)^m/m!), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 22 2019
STATUS
approved