login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326097
E.g.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^n - A(x))^n / n!.
2
1, 1, 1, 11, 160, 3634, 110891, 4335204, 208768568, 12053087736, 817245047097, 64036149563110, 5723761837812580, 577407946342497516, 65153800747494185897, 8160944217790837737502, 1127265018043808661117840, 170726388496282298937412944, 28207398922198230159415688865, 5061214928838269566809894806406
OFFSET
0,4
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = (1+x) with p = -A(x), r = 1.
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^n - A(x))^n / n!.
(2) 1 = Sum_{n>=0} (1+x)^(n^2) * exp(-(1+x)^n*A(x)) / n!.
a(4*n+2) = 1 (mod 2), otherwise the terms a(k) are even for k > 3 (conjecture).
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 11*x^3/3! + 160*x^4/4! + 3634*x^5/5! + 110891*x^6/6! + 4335204*x^7/7! + 208768568*x^8/8! + 12053087736*x^9/9! + 817245047097*x^10/10! + ...
such that
1 = 1 + ((1+x) - A(x)) + ((1+x)^2 - A(x))^2/2! + ((1+x)^3 - A(x))^3/3! + ((1+x)^4 - A(x))^4/4! + ((1+x)^5 - A(x))^5/5! + ((1+x)^6 - A(x))^6/6! + ...
also
1 = exp(-A(x)) + (1+x)*exp(-(1+x)*A(x)) + (1+x)^4*exp(-(1+x)^2*A(x))/2! + (1+x)^9*exp(-(1+x)^3*A(x))/3! + (1+x)^16*exp(-(1+x)^4*A(x))/4! + (1+x)^25*exp(-(1+x)^5*A(x))/5! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, ((1+x)^m - Ser(A))^m/m! ), #A-1) ); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A379687 A348151 A324430 * A135700 A205086 A370911
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 06 2019
STATUS
approved