login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326095
E.g.f. A(x) satisfies: 1 = Sum_{n>=0} (exp(n*x) - A(x))^n / n!.
3
1, 1, 2, 15, 234, 5525, 176823, 7232050, 363749900, 21891574683, 1544392825386, 125684334518985, 11648104664937271, 1216426938053726672, 141882106115149781072, 18344653087551340567427, 2612237303669636927142962, 407360290222179197806752141, 69221669418346150774013957483, 12760799611726977737400430776570, 2541919524892729009158279375599352
OFFSET
0,3
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = -A(x), r = 1.
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} (exp(n*x) - A(x))^n / n!.
(2) 1 = Sum_{n>=0} exp(n^2*x - A(x)*exp(n*x)) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 15*x^3/3! + 234*x^4/4! + 5525*x^5/5! + 176823*x^6/6! + 7232050*x^7/7! + 363749900*x^8/8! + 21891574683*x^9/9! + 1544392825386*x^10/10! + ...
such that
1 = 1 + (exp(x) - A(x)) + (exp(2*x) - A(x))^2/2! + (exp(3*x) - A(x))^3/3! + (exp(4*x) - A(x))^4/4! + (exp(5*x) - A(x))^5/5! + (exp(6*x) - A(x))^6/6! + ...
also
1 = exp(-A(x)) + exp(x - A(x)*exp(x)) + exp(4*x - A(x)*exp(2*x))/2! + exp(9*x - A(x)*exp(3*x))/3! + exp(16*x - A(x)*exp(4*x))/4! + exp(25*x - A(x)*exp(5*x))/5! + exp(36*x - A(x)*exp(6*x))/6! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=0, #A, (exp(m*x +x*O(x^#A)) - Ser(A))^m/m! ), #A-1); ); n!*A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A216860 A161968 A294043 * A212370 A302358 A192561
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 06 2019
STATUS
approved