|
|
A302358
|
|
a(n) = coefficient of x^n in the n-th iteration (n-fold self-composition) of e.g.f. -log(1 - x).
|
|
4
|
|
|
1, 2, 15, 234, 6170, 245755, 13761937, 1030431500, 99399019626, 12003835242090, 1773907219147800, 314880916127332489, 66109411013740671200, 16204039283106534720952, 4585484528618722750937783, 1483746673734716952089913364, 544359300175753347889146067840
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = T(n,n), T(n,k) = Sum_{j=1..n} |Stirling1(n,j)| * T(j,k-1), k>1, T(n,1) = (n-1)!. - Seiichi Manyama, Feb 11 2022
|
|
EXAMPLE
|
The initial coefficients of successive iterations of e.g.f. A(x) = -log(1 - x) are as follows:
n = 1: 0, (1), 1, 2, 6, 24, ... e.g.f. A(x)
n = 2: 0, 1, (2), 7, 35, 228, ... e.g.f. A(A(x))
n = 3: 0, 1, 3, (15), 105, 947, ... e.g.f. A(A(A(x)))
n = 4: 0, 1, 4, 26, (234), 2696, ... e.g.f. A(A(A(A(x))))
n = 5: 0, 1, 5, 40, 440, (6170), ... e.g.f. A(A(A(A(A(x)))))
|
|
MAPLE
|
g:= x-> -log(1-x):
a:= n-> n! * coeff(series((g@@n)(x), x, n+1), x, n):
|
|
MATHEMATICA
|
Table[n! SeriesCoefficient[Nest[Function[x, -Log[1 - x]], x, n], {x, 0, n}], {n, 17}]
|
|
PROG
|
(PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
|
|
CROSSREFS
|
Cf. A000268, A000310, A000359, A000406, A001765, A003713, A104150, A139383, A158832, A174482, A261280.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|