The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302358 a(n) = coefficient of x^n in the n-th iteration (n-fold self-composition) of e.g.f. -log(1 - x). 4
 1, 2, 15, 234, 6170, 245755, 13761937, 1030431500, 99399019626, 12003835242090, 1773907219147800, 314880916127332489, 66109411013740671200, 16204039283106534720952, 4585484528618722750937783, 1483746673734716952089913364, 544359300175753347889146067840 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..246 Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy] N. J. A. Sloane, Transforms FORMULA a(n) = T(n,n), T(n,k) = Sum_{j=1..n} |Stirling1(n,j)| * T(j,k-1), k>1, T(n,1) = (n-1)!. - Seiichi Manyama, Feb 11 2022 EXAMPLE The initial coefficients of successive iterations of e.g.f. A(x) = -log(1 - x) are as follows: n = 1: 0, (1), 1, 2, 6, 24, ... e.g.f. A(x) n = 2: 0, 1, (2), 7, 35, 228, ... e.g.f. A(A(x)) n = 3: 0, 1, 3, (15), 105, 947, ... e.g.f. A(A(A(x))) n = 4: 0, 1, 4, 26, (234), 2696, ... e.g.f. A(A(A(A(x)))) n = 5: 0, 1, 5, 40, 440, (6170), ... e.g.f. A(A(A(A(A(x))))) MAPLE g:= x-> -log(1-x): a:= n-> n! * coeff(series((g@@n)(x), x, n+1), x, n): seq(a(n), n=1..19); # Alois P. Heinz, Feb 11 2022 MATHEMATICA Table[n! SeriesCoefficient[Nest[Function[x, -Log[1 - x]], x, n], {x, 0, n}], {n, 17}] PROG (PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1))); a(n) = T(n, n); \\ Seiichi Manyama, Feb 11 2022 CROSSREFS Cf. A000268, A000310, A000359, A000406, A001765, A003713, A104150, A139383, A158832, A174482, A261280. Sequence in context: A294043 A326095 A212370 * A192561 A356587 A227098 Adjacent sequences: A302355 A302356 A302357 * A302359 A302360 A302361 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 9 21:43 EDT 2023. Contains 363183 sequences. (Running on oeis4.)