login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000406
Coefficients of iterated exponentials.
(Formerly M4264 N1782)
8
1, 6, 57, 741, 12244, 245755, 5809875, 158198200, 4877852505, 168055077875, 6400217406500, 267058149580823, 12118701719205803, 594291742526530761, 31323687504696772151, 1766116437541895988303, 106080070002238888908150
OFFSET
1,2
REFERENCES
J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
FORMULA
E.g.f.: -log(1+log(1+log(1+log(1+log(1+log(1-x)))))).
MATHEMATICA
With[{nn=20}, CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+ Log[1+ Log[1- x]]]]]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 03 2015 *)
PROG
(PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 6); \\ Seiichi Manyama, Feb 11 2022
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1-x)))))))) \\ Seiichi Manyama, Feb 11 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved