login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216860
G.f.: Sum_{n>=0} n!^2 * x^n / Product_{k=1..n} (1 + k*x)^2.
2
1, 1, 2, 15, 232, 5693, 202398, 9829771, 624964724, 50365047225, 5016187555114, 604968014349767, 86878610741366976, 14648881145458377397, 2865572277481996560950, 643666405504709227632003, 164536267335939429654990988, 47489465018413227906492425009
OFFSET
0,3
COMMENTS
Compare g.f. to: 1/(1-x) = Sum_{n>=0} n!*x^n/Product_{k=1..n} (1 + k*x).
LINKS
FORMULA
a(n) ~ exp(-1) * (n!)^2. - Vaclav Kotesovec, Nov 02 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 15*x^3 + 232*x^4 + 5693*x^5 + 202398*x^6 +...
where
A(x) = 1 + x/(1+x)^2 + 2!^2*x^2/((1+x)*(1+2*x))^2 + 3!^2*x^3/((1+x)*(1+2*x)*(1+3*x))^2 + 4!^2*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x))^2 +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m!^2*x^m/prod(k=1, m, 1+k*x +x*O(x^n))^2), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A216859.
Sequence in context: A197236 A097628 A305111 * A161968 A294043 A326095
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2012
STATUS
approved